Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(2): e2208963120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595706

ABSTRACT

Layer 5 (L5) pyramidal neurons receive predictive and sensory inputs in a compartmentalized manner at their apical and basal dendrites, respectively. To uncover how integration of sensory inputs is affected in autism spectrum disorders (ASD), we used two-photon glutamate uncaging to activate spines in the basal dendrites of L5 pyramidal neurons from a mouse model of Fragile X syndrome (FXS), the most common genetic cause of ASD. While subthreshold excitatory inputs integrate linearly in wild-type animals, surprisingly those with FXS summate sublinearly, contradicting what would be expected of sensory hypersensitivity classically associated with ASD. We next investigated the mechanism underlying this sublinearity by performing knockdown of the regulatory ß4 subunit of BK channels, which rescued the synaptic integration, a result that was corroborated with numerical simulations. Taken together, these findings suggest that there is a differential impairment in the integration of feedforward sensory and feedback predictive inputs in L5 pyramidal neurons in FXS and potentially other forms of ASD, as a result of specifically localized subcellular channelopathies. These results challenge the traditional view that FXS and other ASD are characterized by sensory hypersensitivity, proposing instead a hyposensitivity of sensory inputs and hypersensitivity of predictive inputs onto cortical neurons.


Subject(s)
Fragile X Syndrome , Mice , Animals , Large-Conductance Calcium-Activated Potassium Channels , Pyramidal Cells/physiology , Dendrites/physiology , Neurons
2.
J Physiol ; 600(9): 2165-2187, 2022 05.
Article in English | MEDLINE | ID: mdl-35194785

ABSTRACT

Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 µm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 µm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 µm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 µm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.


Subject(s)
Dendritic Spines , Large-Conductance Calcium-Activated Potassium Channels , Calcium/metabolism , Dendrites/physiology , Dendritic Spines/physiology , Excitatory Postsynaptic Potentials/physiology , Pyramidal Cells/physiology
3.
Nat Commun ; 11(1): 4276, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32848151

ABSTRACT

The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) remains unknown. We performed a spine STDP protocol using two-photon (2P) glutamate uncaging (pre) paired with postsynaptic spikes (post) in layer 5 pyramidal neurons from juvenile mice. Here we report that pre-post pairings that trigger timing-dependent LTP (t-LTP) produce shrinkage of the activated spine neck and increase in synaptic strength; and post-pre pairings that trigger timing-dependent LTD (t-LTD) decrease synaptic strength without affecting spine shape. Furthermore, the induction of t-LTP with 2P glutamate uncaging in clustered spines (<5 µm apart) enhances LTP through a NMDA receptor-mediated spine calcium accumulation and actin polymerization-dependent neck shrinkage, whereas t-LTD was dependent on NMDA receptors and disrupted by the activation of clustered spines but recovered when separated by >40 µm. These results indicate that synaptic cooperativity disrupts t-LTD and extends the temporal window for the induction of t-LTP, leading to STDP only encompassing LTP.


Subject(s)
Dendritic Spines/physiology , Neuronal Plasticity/physiology , Action Potentials/physiology , Animals , Calcium Signaling/physiology , In Vitro Techniques , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Models, Neurological , Pyramidal Cells/physiology , Receptors, N-Methyl-D-Aspartate/physiology
4.
PeerJ ; 6: e4593, 2018.
Article in English | MEDLINE | ID: mdl-29666757

ABSTRACT

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders. From an evolutionary standpoint, phylogenetic relationships among the DRD1 class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed. In contrast, phylogenetic relationships among the DRD 2 group of receptors are well understood. Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that have restricted phyletic distributions (e.g., DRD2l and DRD4rs). Thus, the goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the D1 class of dopamine receptors and the time of origin of the DRD2l and DRD4rs gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD1 group the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. Within the DRD1 class of dopamine receptors we recovered the sister group relationship between the DRD1C and DRD1E, and this clade was recovered sister to a cyclostome sequence. The DRD1 clade was recovered sister to the aforementioned clade, and the group containing DRD5 receptors was sister to all other DRD1 paralogs. In agreement with the literature, among the DRD2 class of receptors, DRD2 was recovered sister to DRD3, whereas DRD4 was sister to the DRD2/DRD3 clade. According to our phylogenetic tree, the DRD2l and DRD4rs gene lineages would have originated in the ancestor of gnathostomes between 615 and 473 mya. Conservation of sequences required for dopaminergic neurotransmission and small changes in regulatory regions suggest a functional refinement of the dopaminergic pathways along evolution.

5.
Elife ; 52016 05 25.
Article in English | MEDLINE | ID: mdl-27223325

ABSTRACT

The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.


Subject(s)
Antigens, Neoplasm/metabolism , Axon Guidance , Cerebral Cortex/embryology , Gene Expression Regulation, Developmental , Neurons/physiology , RNA-Binding Proteins/metabolism , RNA/metabolism , Animals , Mice , Mice, Knockout , Neuro-Oncological Ventral Antigen
6.
Mol Cell Biol ; 30(14): 3646-60, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20479127

ABSTRACT

The frequency sensitivity of auditory hair cells in the inner ear varies with their longitudinal position in the sensory epithelium. Among the factors that determine the differential cellular response to sound is the resonance of a hair cell's transmembrane electrical potential, whose frequency correlates with the kinetic properties of the high-conductance Ca(2+)-activated K(+) (BK) channels encoded by a Slo (kcnma1) gene. It has been proposed that the inclusion of specific alternative axons in the Slo transcripts along the cochlea underlies the gradient of BK-channel kinetics. By analyzing the complete sequences of chicken Slo gene (cSlo) cDNAs from the chicken's cochlea, we show that most transcripts lack alternative exons. Transcripts with more than one alternative exon constitute only 10% of the total. Although the fraction of transcripts containing alternative exons increases from the cochlear base to the apex, the combination of alternative exons is not regulated. There is also a clear increase in the expression of BK transcripts with long carboxyl termini toward the apex. When long and short BK transcripts are expressed in HEK-293 cells, the kinetics of single-channel currents differ only slightly, but they are substantially slowed when the channels are coexpressed with the auxiliary beta subunit that occurs more widely at the apex. These results argue that the tonotopic gradient is not established by the selective inclusion of highly specific cSlo exons. Instead, a gradient in the expression of beta subunits slows BK channels toward the low-frequency apex of the cochlea.


Subject(s)
Alternative Splicing , Cochlea/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Amino Acid Sequence , Animals , Cell Line , Chickens , Cochlea/anatomy & histology , Electrophysiological Phenomena , Exons , Humans , Kinetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Models, Molecular , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tissue Distribution
7.
Cell Biochem Funct ; 24(4): 291-8, 2006.
Article in English | MEDLINE | ID: mdl-16170835

ABSTRACT

The positive health effects derived from moderate wine consumption are pleiotropic. They appear as improvements in cardiovascular risk factors such as plasma lipids, haemostatic mechanisms, endothelial function and antioxidant defences. The active principles would be ethanol and mainly polyphenols. Results from our and other laboratories support the unifying hypothesis that the improvements in risk factors after red wine consumption are mediated by endothelial nitric oxide synthase (eNOS). Many genes are involved, but the participation of eNOS would be a constant feature. The metabolic syndrome is a cluster of metabolic risk factors associated with high risk of cardiovascular disease (CVD). The National Cholesterol Education Programmmes Adult Treatment Panel III (NCEPATP III) clinical definition of the metabolic syndrome requires the presence of at least three risk factors, from among abdominal obesity, high plasma triacylglycerols, low plasma HDL, high blood pressure and high fasting plasma glucose. The molecular mechanisms responsible for the metabolic syndrome are not known. Since metabolic syndrome apparently affects 10-30% of the population in the world, research on its pathogenesis and control is needed. The recent finding that eNOS knockout mice present a cluster of cardiovascular risk factors comparable to those of the metabolic syndrome suggests that defects in eNOS function may cause human metabolic syndrome. These mice are hypertensive, insulin resistant and dyslipidemic. Further support for a pathogenic role of eNOS comes from the finding in humans that eNOS polymorphisms associate with insulin resistance and diabetes, with hypertension, with inflammatory and oxidative stress markers and with albuminuria. So, the data sustain the hypothesis that eNOS enhancement should reduce metabolic syndrome incidence and its consequences. Therefore red wine, since it enhances eNOS function, should be considered as a potential tool for the control of metabolic syndrome. This hypothesis is supported by epidemiological observations and needs experimental validation in human intervention studies.


Subject(s)
Ethanol/pharmacology , Metabolic Syndrome/metabolism , Metabolic Syndrome/prevention & control , Nitric Oxide Synthase Type III/metabolism , Protective Agents/pharmacology , Wine , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/metabolism , Dose-Response Relationship, Drug , Female , Flavonoids/analysis , Flavonoids/pharmacology , Humans , Hyperlipidemias/metabolism , Hypertension/metabolism , Male , Mice , Mice, Knockout/genetics , Nitric Oxide Synthase Type III/genetics , Phenols/analysis , Phenols/pharmacology , Polyphenols , Risk Factors , Sex Factors , Wine/analysis
8.
Free Radic Res ; 39(2): 175-83, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15763965

ABSTRACT

Cu(II) mediated low density lipoprotein (LDL) oxidation has been followed by the changes in absorbance at 234 nm and the emitted low level chemiluminescence (CL). The similarity of the time profiles allows us to conclude that the emitted CL is due to the decomposition of a transient product, most likely a hydroperoxide. Red wine, as well as its fractions, afford a noticeable protection when added prior to the start of the LDL oxidation process. On the other hand, when they are added after the onset of the autocatalytic oxidation phase, red wine and its fractions behave as pro-oxidants. This is particularly evidenced by a strong burst of CL (enhancement of the light by a factor approximately 20). This burst is reduced by metal chelators (EDTA and DFO) and can be associated to a sequence of reactions such as XOH + Cu(II) --> X* + H(+) + Cu(I), Cu(I) + LOOH --> chemiluminescence where XOH is a phenolic compound and LOOH is a peroxide-like compound produced in the LDL oxidation.


Subject(s)
Antioxidants/chemistry , Cholesterol, LDL/chemistry , Copper/chemistry , Luminescent Measurements , Reactive Oxygen Species/chemistry , Wine/analysis , Absorption , Benzothiazoles , Free Radical Scavengers/chemistry , Humans , Iron/chemistry , Kinetics , Oxidation-Reduction , Sulfonic Acids/chemistry , Time Factors
9.
J Agric Food Chem ; 50(26): 7542-7, 2002 Dec 18.
Article in English | MEDLINE | ID: mdl-12475268

ABSTRACT

Oxidative modification of low-density lipoprotein (LDL) particles is a key event in the development of atherosclerosis. Oxidized LDL induces oxidative stress and modifies gene expression in endothelial cells. Berries constitute a rich dietary source of phenolic antioxidants. We found that the endemic Chilean berry Aristotelia chilensis (ach) has higher phenol content and scores better for total radical-trapping potential and total antioxidant reactivity in in vitro antioxidant capacity tests, when compared to different commercial berries. The juice of ach is also effective in inhibiting copper-induced LDL oxidation. In human endothelial cell cultures, the addition of ach juice significantly protects from hydrogen peroxide-induced intracellular oxidative stress and is dose-dependent. The aqueous, anthocyanin-rich fraction of ach juice accounts for most of ach's antioxidant properties. These results show that ach is a rich source of phenolics with high antioxidant capacity and suggest that it may have antiatherogenic properties.


Subject(s)
Antioxidants/pharmacology , Endothelium, Vascular/drug effects , Fruit/chemistry , Lipoproteins, LDL/chemistry , Magnoliopsida/chemistry , Phenols/pharmacology , Cells, Cultured , Copper/chemistry , Humans , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Oxidation-Reduction , Oxidative Stress/drug effects , Phenols/analysis , Plant Extracts/chemistry , Plant Structures/chemistry , Umbilical Veins , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...