Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1322874, 2023.
Article in English | MEDLINE | ID: mdl-38314094

ABSTRACT

The gut microbiota harbors diverse bacteria considered reservoirs for antimicrobial resistance genes. The global emergence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales (ESBL-PE) significantly contributes to healthcare-associated infections (HAIs). We investigated the presence of ESBL-producing Escherichia coli (ESBL-PEco) and ESBL-producing Klebsiella pneumoniae (ESBL-PKpn) in neonatal patients' guts. Furthermore, we identified the factors contributing to the transition towards ESBL-PEco and ESBL-PKpn-associated healthcare-associated infections (HAIs). The study was conducted from August 2019 to February 2020, in a Neonatal Intensive Care Unit of the Hospital Infantil de México Federico Gómez. Rectal samples were obtained upon admission, on a weekly basis for a month, and then biweekly until discharge from the neonatology ward. Clinical data, culture results, and infection information were gathered. We conducted antimicrobial tests, multiplex PCR assay, and pulsed-field gel electrophoresis (PFGE) to determine the antimicrobial resistance profile and genetic relationships. A comparison between the group's controls and cases was performed using the Wilcoxon and Student t-tests. Of the 61 patients enrolled, 47 were included, and 203 rectal samples were collected, identifying 242 isolates. In 41/47 (87%) patients, colonization was due to ESBL-PEco or ESBL-PKpn. And nine of them developed HAIs (22%, 9/41). ESBL-PEco resistance to cephalosporins ranged from 25.4% to 100%, while ESBL-PKpn resistance varied from 3% to 99%, and both bacteria were susceptible to carbapenems, tigecillin, and colistin. The prevalent bla CTX-M-group-1 gene accounted for 77.2% in ESBL-PEco and 82.2% in ESBL-PKpn, followed by bla TEM 50% and bla OXA-1 43.8% in ESBL-PEco and bla TEM 80.2% and bla SHV 76.2% in ESBL-PKpn. Analysis of clonality revealed identical colonizing and infection isolates in only seven patients. Significant risk factors included hospital stay duration, duration of antibiotic treatment, and invasive device usage. Our findings suggest high ESBL-PEco and ESBL-PKpn rates of colonization often lead to infection in neonates. Attention should be paid to patients with ESBL-PE.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Infant, Newborn , Humans , Klebsiella pneumoniae/genetics , Escherichia coli/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Multiplex Polymerase Chain Reaction , Klebsiella Infections/microbiology , Microbial Sensitivity Tests
2.
Front Pediatr ; 10: 859092, 2022.
Article in English | MEDLINE | ID: mdl-35463891

ABSTRACT

Introduction: Acute respiratory syndrome secondary to SARS-CoV-2 virus infection has been declared a pandemic since December 2019. On neonates, severe presentations are infrequent but possible. Lung ultrasound (LUS) has been shown to be useful in diagnosing lung involvement and following up patients, giving more information, and reducing exposure compared to traditional examination. Methods: LUS was performed after the diagnosis of SARS-CoV-2 infection with respiratory Real Time Polymerase Chain Reaction RT-PCR with portable equipment protected with a silicone sleeve. If hemodynamic or cardiology consultation was necessary, a prepared complete ultrasound machine was used. Ten regions were explored (anterior superior and inferior, lateral, and posterior superior and inferior, right and left), and a semiquantitative score (LUSS) was calculated. Disease severity was determined with a pediatric modified score. Results: Thirty-eight patients with positive RT-PCR were admitted, 32 (81%) of which underwent LUS. Included patients had heterogenous diagnosis and gestational ages as expected on a referral neonatal intensive care unit (NICU) (median, ICR: 36, 30-38). LUS abnormalities found were B-line interstitial pattern 90%, irregular/interrupted/thick pleural line 88%, compact B-lines 65%, small consolidations (≤5 mm) 34%, and extensive consolidations (≥5 mm) 37%. Consolidations showed posterior predominance (70%). LUSS showed a median difference between levels of disease severity and ventilatory support (Kruskal-Wallis, p = 0.001) and decreased with patient improvement (Wilcoxon signed-rank test p = 0.005). There was a positive correlation between LUSS and FiO2 needed (Spearman r = 0.72, p = 0.01). The most common recommendation to the attending team was pronation (41%) and increase in positive end expiratory pressure (34%). Five patients with comorbidities died. A significant rank difference of LUSS and FiO2 needed between survivors and non-survivors was found (Mann-Whitney U-test, p = 0.005). Conclusion: LUS patterns found were like the ones described in other series (neonatal and pediatrics). Eighty-eight percent of the studies were performed with handheld affordable equipment. While there is no specific pattern, it varies according to gestational age and baseline diagnosis LUS, which were shown to be useful in assessing lung involvement that correlated with the degree of disease severity and respiratory support.

SELECTION OF CITATIONS
SEARCH DETAIL
...