Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 108, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168919

ABSTRACT

Phenotypic plasticity is usually defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. While the benefits of plasticity for adaptation are well established, the costs associated with plasticity remain somewhat obscure. Understanding both why and how these costs arise could help us explain and predict the behavior of living creatures as well as allow the design of more adaptable robotic systems. One of the challenges of conducting such investigations concerns the difficulty of isolating the effects of different types of costs and the lack of control over environmental conditions. The present study addresses these challenges by using virtual worlds (software) to investigate the environmentally regulated phenotypic plasticity of digital organisms. The experimental setup guarantees that potential genetic costs of plasticity are isolated from other plasticity-related costs. Multiple populations of organisms endowed with and without phenotypic plasticity in either the body or the brain are evolved in simulation, and organisms must cope with different environmental conditions. The traits and fitness of the emergent organisms are compared, demonstrating cases in which plasticity is beneficial and cases in which it is neutral. The hypothesis put forward here is that the potential benefits of plasticity might be undermined by the genetic costs related to plasticity itself. The results suggest that this hypothesis is true, while further research is needed to guarantee that the observed effects unequivocally derive from genetic costs and not from some other (unforeseen) mechanism related to plasticity.


Subject(s)
Adaptation, Physiological , Biological Evolution , Adaptation, Physiological/genetics , Phenotype , Genotype , Computer Simulation
2.
Sci Rep ; 13(1): 21109, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036589

ABSTRACT

Evolutionary robot systems offer two principal advantages: an advanced way of developing robots through evolutionary optimization and a special research platform to conduct what-if experiments regarding questions about evolution. Our study sits at the intersection of these. We investigate the question "What if the 18th-century biologist Lamarck was not completely wrong and individual traits learned during a lifetime could be passed on to offspring through inheritance?" We research this issue through simulations with an evolutionary robot framework where morphologies (bodies) and controllers (brains) of robots are evolvable and robots also can improve their controllers through learning during their lifetime. Within this framework, we compare a Lamarckian system, where learned bits of the brain are inheritable, with a Darwinian system, where they are not. Analyzing simulations based on these systems, we obtain new insights about Lamarckian evolution dynamics and the interaction between evolution and learning. Specifically, we show that Lamarckism amplifies the emergence of 'morphological intelligence', the ability of a given robot body to acquire a good brain by learning, and identify the source of this success: newborn robots have a higher fitness because their inherited brains match their bodies better than those in a Darwinian system.

3.
Artif Life ; 28(2): 224-239, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767375

ABSTRACT

The environment is one of the key factors in the emergence of intelligent creatures, but it has received little attention within the Evolutionary Robotics literature. This article investigates the effects of changing environments on morphological and behavioral traits of evolvable robots. In particular, we extend a previous study by evolving robot populations under diverse changing-environment setups, varying the magnitude, frequency, duration, and dynamics of the changes. The results show that long-lasting effects of early generations occur not only when transitioning from easy to hard conditions, but also when going from hard to easy conditions. Furthermore, we demonstrate how the impact of environmental scaffolding is dependent on the nature of the environmental changes involved.


Subject(s)
Robotics , Biological Evolution , Phenotype , Robotics/methods
4.
Front Robot AI ; 8: 672379, 2021.
Article in English | MEDLINE | ID: mdl-34212008

ABSTRACT

Genetic encodings and their particular properties are known to have a strong influence on the success of evolutionary systems. However, the literature has widely focused on studying the effects that encodings have on performance, i.e., fitness-oriented studies. Notably, this anchoring of the literature to performance is limiting, considering that performance provides bounded information about the behavior of a robot system. In this paper, we investigate how genetic encodings constrain the space of robot phenotypes and robot behavior. In summary, we demonstrate how two generative encodings of different nature lead to very different robots and discuss these differences. Our principal contributions are creating awareness about robot encoding biases, demonstrating how such biases affect evolved morphological, control, and behavioral traits, and finally scrutinizing the trade-offs among different biases.

5.
PLoS One ; 15(5): e0233848, 2020.
Article in English | MEDLINE | ID: mdl-32470076

ABSTRACT

The field of Evolutionary Robotics addresses the challenge of automatically designing robotic systems. Furthermore, the field can also support biological investigations related to evolution. In this paper, we evolve (simulated) modular robots under diverse environmental conditions and analyze the influences that these conditions have on the evolved morphologies, controllers, and behavior. To this end, we introduce a set of morphological, controller, and behavioral descriptors that together span a multi-dimensional trait space. Using these descriptors, we demonstrate how changes in environmental conditions induce different levels of differentiation in this trait space. Our main goal is to gain deeper insights into the effect of the environment on a robotic evolutionary process.


Subject(s)
Environment , Robotics , Algorithms , Phenotype , Seasons
6.
Front Robot AI ; 7: 107, 2020.
Article in English | MEDLINE | ID: mdl-33501274

ABSTRACT

Evolutionary robot systems are usually affected by the properties of the environment indirectly through selection. In this paper, we present and investigate a system where the environment also has a direct effect-through regulation. We propose a novel robot encoding method where a genotype encodes multiple possible phenotypes, and the incarnation of a robot depends on the environmental conditions taking place in a determined moment of its life. This means that the morphology, controller, and behavior of a robot can change according to the environment. Importantly, this process of development can happen at any moment of a robot's lifetime, according to its experienced environmental stimuli. We provide an empirical proof-of-concept, and the analysis of the experimental results shows that environmental regulation improves adaptation (task performance) while leading to different evolved morphologies, controllers, and behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...