Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 38(9): 2188-2197, 2019 09.
Article in English | MEDLINE | ID: mdl-30843805

ABSTRACT

The goal of this paper is to develop a new skin imaging modality which addresses the current clinical need for a non-invasive imaging tool that images the skin over its depth with high resolutions while offering large histopathological-like contrasts between malignant and normal tissues. We demonstrate that by taking advantage of the intrinsic millimeter-wave dielectric contrasts between normal and malignant skin tissues, ultra-high-resolution millimeter-wave imaging (MMWI) can achieve 3-D, high-contrast images of the skin. In this paper, an imaging system with a record-wide bandwidth of 98 GHz is developed using the synthetic ultra-wideband millimeter-wave imaging approach, a new ultra-high-resolution imaging technique recently developed by the authors. The 21 non-melanoma skin cancer (NMSC) specimens are imaged and compared with histopathology for evaluation. A programmable measurement platform is designed to automatically scan the tissues across a rectangular aperture plane. Furthermore, a novel frequency-domain imaging algorithm is developed to process the recorded signals and generate an image of the cancerous tissue. The high correlations achieved between MMWI images and histological images allow for rapid and accurate delineation of NMSC tissues. The millimeter-wave reflectivity values are also found to be statistically significant higher for cancerous areas with respect to normal areas. Since MMWI does not require tissue processing or staining, it can be performed promptly, enabling diagnosis of tumors at an early stage as well as simplify the tumor removal surgery to a single-layer excision procedure.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Skin Neoplasms/diagnostic imaging , Skin/diagnostic imaging , Algorithms , Equipment Design , Humans , Imaging, Three-Dimensional/economics , Imaging, Three-Dimensional/instrumentation , Phantoms, Imaging
2.
IEEE Trans Biomed Eng ; 66(1): 176-186, 2019 01.
Article in English | MEDLINE | ID: mdl-29993432

ABSTRACT

This work introduces new, stable, and broadband skin-equivalent semisolid phantoms for mimicking interactions of millimeter waves with the human skin and skin tumors. Realistic skin phantoms serve as an invaluable tool for exploring the feasibility of new technologies and improving design concepts related to millimeter-wave skin cancer detection methods. Normal and malignant skin tissues are separately mimicked by using appropriate mixtures of deionized water, oil, gelatin powder, formaldehyde, TX-150 (a gelling agent, widely referred to as "super stuff"), and detergent. The dielectric properties of the phantoms are characterized over the frequency band of 0.5-50 GHz using a slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer. The measured permittivity results show excellent match with ex vivo, fresh skin (both normal and malignant) permittivities determined in our prior work over the entire frequency range. This work results in the closest match among all phantoms reported in the literature to surrogate human skin tissues. The stability of dielectric properties over time is also investigated. The phantoms demonstrate long-term stability (up to 7 months was investigated). In addition, the penetration depth of millimeter waves into normal and malignant skin phantoms is calculated. It is determined that millimeter waves penetrate the human skin deep enough (0.6 mm on average at 50 GHz) to affect the majority of the epidermis and dermis skin structures.


Subject(s)
Diagnostic Imaging/instrumentation , Diagnostic Imaging/standards , Phantoms, Imaging , Skin Neoplasms/diagnostic imaging , Skin/diagnostic imaging , Equipment Design , Humans
3.
IEEE Trans Biomed Eng ; 66(1): 61-71, 2019 01.
Article in English | MEDLINE | ID: mdl-29993467

ABSTRACT

This work introduces, for the first time, a millimeter-wave imaging system with a "synthetic" ultra-wide imaging bandwidth of 98 GHz to provide the ultra-high resolutions required for early-stage skin cancer detection. The proposed approach consists of splitting the required ultra-wide imaging bandwidth into four sub-bands, and assigning each sub-band to a separate imaging element, i.e., an antenna radiator. Each of the sub-band antennas transmits and receives signals only at its corresponding sub-band. The captured signals are then combined and processed to form the image of the target. For each sub-band, a Vivaldi tapered slot antenna fed with a combination of substrate-integrated waveguide and coplanar waveguide is designed and microfabricated. Design techniques are also provided for the four similarly-shaped sub-band antennas for achieving excellent impedance matches ( S11 < -10 dB) and nearly constant gains of 10 dBi over the entire 12-110 GHz bandwidth. The design procedure is validated by comparing the simulated results with measurements performed on the fabricated prototypes. Excellent agreements are obtained between simulations and measurements. Finally, the feasibility of detecting early-stage skin tumors in three dimensions is experimentally verified by employing the sub-band antennas in a synthetic ultra-wideband imaging system with a bandwidth of 98 GHz. Two separate setups, each comprising a dispersive skin-mimicking phantom as well as two dispersive spherical tumors, are constructed for imaging experiments. Lateral and axial resolutions of 200 µm are confirmed, and a successful reconstruction of the spherical tumors is achieved in both cases.


Subject(s)
Diagnostic Imaging/methods , Skin Neoplasms/diagnostic imaging , Skin/diagnostic imaging , Algorithms , Diagnostic Imaging/instrumentation , Equipment Design , Humans , Image Interpretation, Computer-Assisted/methods , Phantoms, Imaging
4.
IEEE Trans Biomed Eng ; 65(6): 1320-1329, 2018 06.
Article in English | MEDLINE | ID: mdl-28885148

ABSTRACT

Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.


Subject(s)
Carcinoma, Basal Cell/chemistry , Diagnosis, Computer-Assisted/methods , Skin Neoplasms/chemistry , Skin/chemistry , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Basal Cell/surgery , Databases, Factual , Electric Impedance , Female , Humans , Male , Middle Aged , Mohs Surgery , Skin Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL