Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 38(1): 2209828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37184096

ABSTRACT

Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/drug therapy , Piperazine/pharmacology , Dopamine/therapeutic use , Ligands , Indazoles , Serotonin/therapeutic use , Receptors, Serotonin , Antipsychotic Agents/pharmacology , Antipsychotic Agents/chemistry , Receptor, Serotonin, 5-HT1A/therapeutic use
2.
Eur J Med Chem ; 252: 115285, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37027998

ABSTRACT

Schizophrenia is a mental disorder with a complex pathomechanism involving many neurotransmitter systems. Among the currently used antipsychotics, classical drugs acting as dopamine D2 receptor antagonists, and drugs of a newer generation, the so-called atypical antipsychotics, can be distinguished. The latter are characterized by a multi-target profile of action, affecting, apart from the D2 receptor, also serotonin receptors, in particular 5-HT2A and 5-HT1A. Such profile of action is considered superior in terms of both efficacy in treating symptoms and safety. In the search for new potential antipsychotics of such atypical receptor profile, an attempt was made to optimize the arylpiperazine based virtual hit, D2AAK3, which in previous studies displayed an affinity for D2, 5-HT1A and 5-HT2A receptors, and showed antipsychotic activity in vivo. In this work, we present the design of D2AAK3 derivatives (1-17), their synthesis, and structural and pharmacological evaluation. The obtained compounds show affinities for the receptors of interest and their efficacy as antagonists/agonists towards them was confirmed in functional assays. For the selected compound 11, detailed structural studies were carried out using molecular modeling and X-ray methods. Additionally, ADMET parameters and in vivo antipsychotic activity, as well as influence on memory and anxiety processes were evaluated in mice, which indicated good therapeutic potential and safety profile of the studied compound.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Mice , Antipsychotic Agents/chemistry , Receptor, Serotonin, 5-HT2A , Receptors, Dopamine D2/chemistry , Receptors, Serotonin , Schizophrenia/drug therapy , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL
...