Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 61(2): 399-420, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36445530

ABSTRACT

This study describes the development (design, construction, instrumentation, and control) of a nursing mobile robotic device to monitor vital signals in home-cared patients. The proposed device measures electrocardiography potentials, oxygen saturation, skin temperature, and non-invasive arterial pressure of the patient. Additionally, the nursing robot can supply assistance in the gait cycle for people who require it. The robotic device's structural and mechanical components were built using 3D-printed techniques. The instrumentation includes electronic embedded devices and sensors to know the robot's relative position with respect to the patient. With this information together with the available physiological measurements, the robot can work in three different scenarios: (a) in the first one, a robust control strategy regulates the mobile robot operation, including the tracking of the patient under uncertain working scenarios leading to the selection of an appropriate sequence of movements; (b) the second one helps the patients, if they need it, to perform a controlled gait-cycle during outdoors and indoors excursions; and (c) the third one verifies the state of health of the users measuring their vital signs. A graphical user interface (GUI) collects, processes, and displays the information acquired by the bioelectrical amplifiers and signal processing systems. Moreover, it allows easy interaction between the nursing robot, the patients, and the physician. The proposed design has been tested with five volunteers showing efficient assistance for primary health care. Graphical Abstract Main stages of the home-care nursing controlled mobile robot.


Subject(s)
Robotic Surgical Procedures , Robotics , Self-Help Devices , Humans , Signal Processing, Computer-Assisted , Movement
2.
ISA Trans ; 133: 134-146, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35963654

ABSTRACT

Acceleration tracking is a significant problem in aeronautics, automotive, and biomedical technical areas because its solution may yield effective simulation of motion cues. In the case of aeronautics, the proper solution for the tracking problem improves the in-flight simulations for the training of plane pilots. These simulators can be set up using robotic devices that develop controlled motions with the end-effector following the required three-dimensional reference accelerations robustly. Hence, the primary goal of this study is the effective application of the integral sliding mode controller to solve the acceleration tracking problem for the end-effector of a two-link robotic arm. The control design problem is formulated as an optimization of a convex (non-strict) performance functional depending on the difference between the acceleration of the robotic arm and the desired acceleration using the averaged sub-gradient (ASG) descendant method. A novel sliding surface considers the sensitiveness threshold for acceleration dynamics, inspired by the limit of detection in the pilot vestibular apparatus. The proposed controller was analyzed in terms of the finite-time convergence of the sliding surface and the practical stability analysis for the tracking error dynamics. Our main contribution is the design of the online averaged sub-gradient optimization controller based on integral SMCs. The controller solves the end-effector acceleration tracking for a two-link robotic arm, which implements a simplified version of a flight simulator that is considered to be operated under uncertain scenarios and assumes the presence of perturbations and modeling errors. The controller considers the case of incomplete knowledge of the robotic arm model, which adds an extra degree of robustness to the control design. The numerical evaluations demonstrate the attributes of the ASG formulation compared to traditional state feedback control, using the performance functional, the norm of the acceleration tracking error, and the control input variation.


Subject(s)
Cues , Robotic Surgical Procedures , Acceleration , Motion , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...