Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi Pharm J ; 31(6): 989-997, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37234342

ABSTRACT

In the last twenty years, protein kinases have been identified as important targets for cancer therapy. In order to prevent unexpected toxicity, medicinal chemists have always focused on discovering selective protein kinase inhibitors. However, cancer is a multifactorial process and its formation and progression depend on different stimuli. Therefore, it is imperative to develop anticancer therapy that targets multiple kinases associated cancer progression. In this research a series of hybrid compounds was designed and synthesized successfully with the aim of producing anticancer activity through the induction of multiple protein kinase inhibition. The designed derivatives comprise isatin and pyrrolo[2,3-d]pyrimidine scaffolds in their structures with a hydrazine linking the two pharmacophores. Antiproliferative and kinase inhibition assays revealed promising anticancer and multi-kinase inhibitory effects of compound 7 with comparable results with the reference standards. Moreover, compound 7 suppressed cell cycle progression and induced apoptosis in HepG2 cells. Finally, molecular docking simulation was performed to investigate the potential types of interactions between the protein kinase enzymes and the designed hybrid compounds. The results of this research indicated the promising anticancer effect of compound 7 through the inhibition of a number of protein kinase receptors and the suppression of cell cycle and the induction of apoptosis.

2.
Medicina (Kaunas) ; 59(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36984611

ABSTRACT

The traditional single-treatment strategy for cancer is frequently unsuccessful due to the complexity of cellular signaling. However, suppression of multiple targets is vital to defeat tumor cells. In this research, new compounds for the treatment of cancer were developed successfully as novel hybrid anticancer agents. Based on a molecular hybridization strategy, we designed hybrid agents that target multiple protein kinases to fight cancer cells. The proposed hybrid agents combined purine and isatin moieties in their structures with 4-aminobenzohydrazide and hydrazine as different linkers. Having those two moieties in one molecule enabled the capability to inhibit multiple kinases, such as human epidermal receptor (EGFR), human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 2 (CDK2). Anticancer activity was evaluated by performing cytotoxicity assays, kinase inhibition assays, cell cycle analysis, and BAX, Bcl-2, Caspase 3 and Caspase 9 protein level determination assays. The results showed that the designed hybrids tackled the cancer by inhibiting both cell proliferation and metastasis. A molecular docking study was performed to predict possible binding interactions in the active site of the investigated protein kinase enzymes.


Subject(s)
Antineoplastic Agents , Isatin , Neoplasms , Humans , Isatin/pharmacology , Isatin/chemistry , Isatin/therapeutic use , Molecular Docking Simulation , Vascular Endothelial Growth Factor A , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Cell Proliferation , Apoptosis , Purines/pharmacology , Purines/therapeutic use , Cell Line, Tumor
3.
J Enzyme Inhib Med Chem ; 36(1): 2055-2067, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34551654

ABSTRACT

A series of quinazolin-4(3H)-one derivatives were synthesised and evaluated for their cytotoxicity against human Caucasian breast adenocarcinoma (MCF-7) and human ovarian carcinoma (A2780) cell lines. Cytotoxicity of the most tested compounds was 2- to 30-fold more than the positive control lapatinib (IC50 of 2j = 3.79 ± 0.96; 3j = 0.20 ± 0.02; and lapatinib = 5.9 ± 0.74) against MCF7 cell lines except two compounds (IC50 of 2 b = 15.72 ± 0.07 and 2e = 14.88 ± 0.99). On the other hand, cytotoxicity was 4 - 87 folds (IC50 of 3a = 3.00 ± 1.20; 3 g = 0.14 ± 0.03) more the positive control lapatinib (IC50 = 12.11 ± 1.03) against A2780 cell lines except compound 2e (IC50 = 16.43 ± 1.80). Among the synthesised quinazolin-4(3H)-one derivatives, potent cytotoxic 2f-j and 3f-j were investigated for molecular mechanism of action. Inhibitory activities of the compounds were tested against multiple tyrosine protein kinases (CDK2, HER2, EGFR and VEGFR2) enzymes. As expected, all the quinazolin-4(3H)-one derivatives were showed comparable inhibitory activity against those kinases tested, especially, compound 2i and 3i showed potent inhibitory activity against CDK2, HER2, EGFR tyrosine kinases. Therefore, molecular docking analysis for quinazolin-4(3H)-one derivatives 2i and 3i were performed, and it was revealed that compounds 2i and 3i act as ATP non-competitive type-II inhibitor against CDK2 kinase enzymes and ATP competitive type-I inhibitor against EGFR kinase enzymes. However, in case of HER2, compounds 2i act as ATP non-competitive type-II inhibitor and 3i act as ATP competitive type-I inhibitor. Docking results of known inhibitors were compared with synthesised compounds and found synthesised 2i and 3i are superior than the known inhibitors in case of interactions. In addition, in silico drug likeness properties of quinazolin-4(3H)-one derivatives showed better predicted ADME values than lapatinib.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinazolinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...