Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(6): 2713-2746, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38213285

ABSTRACT

Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.


Subject(s)
Antineoplastic Agents , Neoplasms , Liposomes/chemistry , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Administration, Cutaneous , Combined Modality Therapy , Neoplasms/drug therapy
2.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080008

ABSTRACT

Nanoformulation has been considered one of the newly applied methods in integrated pest management strategies. In this research, a conventional neonicotinoid insecticide acetamiprid was nanoencapsulated via AL (Sodium Alginate) and PEG (Polyethylene Glycol) and tested against the elm leaf beetle Xanthogaleruca luteola. The synthesized particles had spherical-like morphology and nanoscale based on TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering). The encapsulation efficiency and loading percentages of acetamiprid in AL and PEG were 92.58% and 90.15%, and 88.46% and 86.79%, respectively. Leaf discs treated with different formulations by the leaf-dipping method were used for oral toxicity assays. The LC50 values (Lethal Concentration to kill 50% of insect population) of acetamiprid and Al- and PEG-nanoencapsulated formulations on third-instar larvae were 0.68, 0.04, and 0.08 ppm, respectively. Based on the highest relative potency, AL-encapsulated acetamiprid had the most toxicity. The content of energy reserve protein, glucose, and triglyceride and the activity of detoxifying enzymes esterase and glutathione S-transferase of the larvae treated by LC50 values of nanoformulations were also decreased. According to the current findings, the nanoencapsulation of acetamiprid by Al and PEG can increase its insecticidal performance in terms of lethal and sublethal toxicity.

3.
Environ Sci Pollut Res Int ; 28(4): 4317-4328, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32944854

ABSTRACT

Considering the novel applications of metal organic frameworks (MOFs) in photocatalytic fields, in this study, new nanostructures of Eu-MOF have been synthesized using effective, facile, cost-effective, and fast reverse micelle (RM) as well as ultrasound assisted reverse micelle (UARM) methods under the optimal conditions. In order to improve the properties, these nanostructures were extended in the form of fibrous networks. To find nanostructure with distinctive features, thermogravimetric analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and N2 adsorption/desorption analysis were applied. The results revealed that the samples synthesized by UARM method had a crystallite size of 27.5 nm and thermal stability of 252 °C. Therefore, the UARM Eu-MOF sample was selected as the desirable sample. Also, its application was studied as a novel nanophotocatalyst with the ideal properties in the field of brilliant green dye removal. The photocatalytic results indicated the influence of initial dye concentration, pH, photocatalyst dosage, and contact time parameters on the photocatalytic properties with an efficiency of 99.80%. This study provides a new strategy for developing desirable methods, extended structures, and the photocatalytic applications of these products.


Subject(s)
Environmental Pollutants , Nanofibers , Adsorption , Micelles , Ultrasonics
4.
Bioelectrochemistry ; 119: 1-9, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28863276

ABSTRACT

Immobilization of methotrexate (MTX) anticancer drug onto the graphene surface is reported through three methods, including either covalent linkage via (a) EDC/NHS organic activators and (b) electrografting of MTX diazonium salt, or (c) noncovalent bonding, resulting in three different systems. To evaluate the interaction ability of the immobilized MTX with biological species, calf thymus DNA (ctDNA), mouse 4T1 breast tumor, and Human foreskin fibroblast (hFF) cells as models of the primary intracellular target of anticancer drugs, cancer and normal cells, respectively, are examined. The features of the constructed systems and their interactions with ctDNA are followed by surface analysis techniques and electrochemical methods. The results indicate that (i) the amount of the immobilized MTX on the graphene surface is affected by type of the immobilization method; and a maximum value of (Γ=9.3±0.9pmolcm-2) is found via electrografting method, (ii) graphene-modified-MTX has high affinity for ctDNA in a wide dynamic range of concentrations, and (iii) the nature of the interaction is of electrostatic and/or hydrogen bonding type, formed most probably between OH, NH and CO groups of MTX and different DNA functions. Finally, electrochemical impedance spectroscopy results approved the high affinity of the systems for 4T1 cancer cells.


Subject(s)
Antineoplastic Agents/chemistry , DNA/metabolism , Graphite/chemistry , Methotrexate/chemistry , Adsorption , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cattle , Cell Line, Tumor , Electrochemistry , Humans , Methotrexate/metabolism , Methotrexate/pharmacology , Mice , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...