Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Biol Macromol ; 259(Pt 1): 129093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185306

ABSTRACT

MOF-derived heteroatom-doped mesoporous carbons have gained the significant consideration in heterogenous catalytic reactions because of their multipurpose features. Especially, the high Specific Surface Area (SSA) of these materials provides abundant activated sites for the catalytic reactions, while the mesoporous structure allows for the effective mass transfer, enhancing the overall capability of the catalytic process. Herein, the efficient NiO/CN-T (T referred to the pyrolysis temperature) was prepared by facile pyrolysis of MOF/CS composite (Ni-MOF (74), Chitosan) in the presence of excess amount of starch as the carbon precursor. The NiO/CN-T as heterogenous catalyst has desired SSA varied from 1094 to 491 m2.g-1. The optimized catalyst (NiO/CN-600) possesses the superior catalytic activity toward the oxidation of the BnOHs due to its high SSA (1094 m2.g-1), which can notably rectify the mass transfer proficiency. Additionally, the NiO/CN-600 heterogenous catalyst also represents the acceptable chemical stability. So, it was demonstrated that such an innovative strategy can provide several versatile tunability insights for the preparation of MOF/biopolymer-derived heterogenous catalysts.


Subject(s)
Chitosan , Benzyl Alcohol , Carbon , Catalysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...