Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 190: 25-33, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25014544

ABSTRACT

Microinjection, bombardment or tobamovirus and potexvirus based assay has been developed to identify the putative movement protein (MP) or to characterize plasmodesma-mediated macromolecular transport. In this study, we developed a versatile complementation assay for the cell-to-cell and long distance movements of macromolecules by agro-infiltration based on the infectious clones of cucumber mosaic virus (CMV). The movement-deficient CMV reporter was constructed by replacing the MP on RNA 3 with ER targeted GFP. The ectopic expression of CMV MP was able to efficiently move the RNA3-MP::erGFP reporter from the original cell to neighboring cells, whereas CMV MP-M5 mutant was unable to initiate the movement. Importantly, the presence of CMV RNA1 and RNA2 can dramatically amplify the movement signals once the RNA3-MP::erGFP reporter moves out of the original cell. The appropriate observation time for this movement complementation assay was at 48-72 hours post infiltration (hpi), whereas the optimal incubation temperature was between 25 and 28 °C. The ectopic co-expression of MPs from other virus genera, NSm from tomato spotted wilt tospovirus (TSWV) or NSvc4 from rice stripe tenuivirus (RSV), could also facilitate the movement of the RNA3::erGFP reporter from the original cell into other cells. The chimeric mutant virus created by substituting the MP of CMV RNA3 with NSm from TSWV or NSvc4 from RSV move systemically in Nicotiana benthamiana plants by agro-infiltration. This agro-infiltration complementation assay is simple, efficient and reliable. Our approach provides an alternative and powerful tool with great potentials in identifying putative movement protein and characterizing macromolecular trafficking.


Subject(s)
Cell Tracking/methods , Cucumovirus/physiology , Plant Diseases/virology , Virology/methods , Cucumovirus/genetics , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plant Viral Movement Proteins/genetics , Plant Viral Movement Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Nicotiana/virology
2.
J Virol Methods ; 193(2): 583-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23933076

ABSTRACT

Cucumber green mottle mosaic virus (CGMMV) has caused serious damage to Cucurbitaceae crops worldwide. The virus is considered one of the most serious Cucurbitaceae quarantine causes in many countries. In this study, a highly efficient and practical one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed for the detection of CGMMV. The total RNA or crude RNA extracted from watermelon plants or seeds could be detected easily by this RT-LAMP assay. The RT-LAMP assay was conducted in isothermal (63°C) conditions within 1h. The amplified products of CGMMV could be detected as ladder-like bands using agarose gel electrophoresis or visualized in-tube under UV light with the addition of a fluorescent dye. The RT-LAMP amplification was specific to CGMMV, as no cross-reaction was observed with other viruses. The RT-LAMP assay was 100-fold more sensitive than that of reverse-transcription polymerase chain reaction (RT-PCR). This is the first report of the application of the RT-LAMP assay to detect CGMMV. The sensitive, specific and rapid RT-LAMP assay developed in this study can be applied widely in laboratories, the field and quarantine surveillance of CGMMV.


Subject(s)
Cucurbitaceae/virology , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Reverse Transcription , Tobamovirus/isolation & purification , Virology/methods , Sensitivity and Specificity , Tobamovirus/genetics
3.
Virus Res ; 170(1-2): 169-73, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23079112

ABSTRACT

Resistance in cowpea to infection with strains of Cucumber mosaic virus (CMV) involves a local hypersensitive response (HR), and previous studies indicated that the 2a replicase of CMV is involved in HR induction. In this study, we confirmed and extended this observation by demonstrating that the nonviral expression of the 2a protein encoded by CMV is able to induce a cell death response in cowpea plants, whereas no other CMV-encoded proteins elicits such response. The 2a single-amino acid mutant, F631Y, no longer induces the necrosis response, yet the A641S mutant still induces cell death. The 2a double mutant, F631Y and A641S, does not induce HR. However, the three 2a mutants have comparable replicase activities in a fluorescence reporter assay. The 2a(D610A) mutant that alters the highly conserved GDD motif abolishes the replicase activity, however it does not affect HR induction in cowpea. The 2a(301-778aa) fragment introduced with the same D610A mutation in the GDD motif is also capable of inducing HR in cowpea. Collectively, these findings suggest that the 2a protein of CMV is sufficient to induce HR in cowpea independently of its replicase activity.


Subject(s)
Cucumovirus/metabolism , Fabaceae/virology , Plant Diseases/virology , Viral Proteins/metabolism , Cucumovirus/genetics , Gene Expression , Gene Order , Mutation , Plant Leaves/virology , Viral Proteins/genetics
4.
Virol J ; 9: 187, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22958497

ABSTRACT

BACKGROUND: Bean pod mottle virus (BPMV) is a wide-spread and destructive virus that causes huge economic losses in many countries every year. A sensitive, reliable and specific method for rapid surveillance is urgently needed to prevent further spread of BPMV. METHODS: A degenerate reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primer set was designed on the conserved region of BPMV CP gene. The reaction conditions of RT-LAMP were optimized and the feasibility, specificity and sensitivity of this method to detect BPMV were evaluated using the crude RNA rapidly extracted from soybean seeds. RESULTS: The optimized RT-LAMP parameters including 6 mM MgCl2, 0.8 M betaine and temperature at 62.5-65°C could successfully amplify the ladder-like bands from BPMV infected soybean seeds. The amplification was very specific to BPMV that no cross-reaction was observed with other soybean viruses. Inclusion of a fluorescent dye makes it easily be detected in-tube by naked eye. The sensitivity of RT-LAMP assay is higher than the conventional RT-PCR under the conditions tested, and the conventional RT-PCR couldn't be used for detection of BPMV using crude RNA extract from soybean seeds. CONCLUSION: A highly efficient and practical method was developed for the detection of BPMV in soybean seeds by the combination of rapid RNA extraction and RT-LAMP. This RT-LAMP method has great potential for rapid BPMV surveillance and will assist in preventing further spread of this devastating virus.


Subject(s)
Comovirus/classification , Comovirus/isolation & purification , Glycine max/virology , Nucleic Acid Amplification Techniques/methods , Seeds/virology , Base Sequence , RNA, Viral/genetics , Sensitivity and Specificity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...