Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(1): 130523, 2024 01.
Article in English | MEDLINE | ID: mdl-38006987

ABSTRACT

Inorganic polyphosphate (polyP) is an ancient polymer, which was proven to be a signalling molecule in the mammalian brain, mediating the communication between astrocytes via activation of P2Y1 purinoreceptors and modulating the activity of neurons. There is very limited information regarding the ability of polyP to transmit the information as an agonist of purinoreceptors in other cells and tissues. Here, we show that application of polyP to the suspension of primary thymocytes increases the concentration of intracellular calcium. PolyP evoked calcium signal was dependent on the presence of P2X inhibitors but not P2Y1 inhibitor. PolyP dependent increase in intracellular calcium concentration caused mild mitochondrial depolarization, which was dependent on inhibitors of purinoreceptors, extracellular calcium and inhibitor of mitochondrial calcium uniporter but wasn't dependent on cyclosporin A. Application of polyP modulated cell volume regulation machinery of thymocytes in calcium dependent manner. Molecular docking experiments revealed that polyP can potentially bind to several types of P2X receptors with binding energy similar to ATP - natural agonist of P2X purinoreceptors. Further molecular dynamics simulations with P2X4 showed that binding of one molecule of polyP dramatically increases permeability of this receptor-channel for water molecules. Thus, in this research we for the first time showed that polyP can interact with P2X receptors in thymocytes and modulate physiological processes.


Subject(s)
Calcium , Polyphosphates , Animals , Calcium/metabolism , Polyphosphates/pharmacology , Molecular Docking Simulation , Thymocytes/metabolism , Signal Transduction , Mammals/metabolism
2.
FEBS J ; 289(3): 699-711, 2022 02.
Article in English | MEDLINE | ID: mdl-34528385

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder induced by the loss of dopaminergic neurons in midbrain. The mechanism of neurodegeneration is associated with aggregation of misfolded proteins, oxidative stress, and mitochondrial dysfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of the cytosol can activate mitophagy and autophagy. Here, we used sodium pyruvate and sodium lactate to induce changes in intracellular pH in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-synuclein triplication, A53T). We have found that both lactate and pyruvate in millimolar concentrations can induce a short-time acidification of the cytosol in these cells. This induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, application of lactate to acute brain slices of WT and Pink1 KO mice also induced a reduction of pH in neurons and astrocytes that increased the level of mitophagy. Thus, acidification of the cytosol by compounds, which play an important role in cell metabolism, can also activate mitophagy and autophagy and protect cells in the familial form of PD.


Subject(s)
Parkinson Disease/genetics , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , alpha-Synuclein/genetics , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Autophagy/drug effects , Autophagy/genetics , Cytoprotection/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Fibroblasts/drug effects , Humans , Hydrogen-Ion Concentration/drug effects , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/genetics , Mitophagy/drug effects , Mitophagy/genetics , Oxidative Stress/drug effects , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/pathology , Pyruvic Acid/pharmacology , Sodium Lactate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...