Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 284(10): e21635, 2023 10.
Article in English | MEDLINE | ID: mdl-37708509

ABSTRACT

One of the most conspicuous traits of parasitic organisms is a well-developed reproductive system. In Rhizocephala ("Crustacea": Cirripedia) it is believed to be nested in the externa-a "reproductive part" located outside of the host. However, it is not clear how nutrients are transported to the externa. Several authors described a system of lacunae in the externa, and muscular contractions probably enable transport through these cavities. The aim of our study was to visualize (using microcomputed tomography and confocal laser scanning microscopy) and describe lacunar and muscular systems in the externa of Peltogasterella gracilis (fam. Peltogasterellidae). The lacunar system consists of "ventral" lacuna and several protrusions. The "ventral" lacuna is probably responsible for visceral mass nutrition, and mantle protrusions are associated with the mantle nutrition. The gross organization of the muscular system mostly corresponds to previous descriptions in other rhizocephalan species. Nonetheless, we observed several features of the externa morphology that had not been described before such as a muscular thickening in the proximal externa's part and a stalk plug disk. The muscular thickening might play a role of a propulsatory organ, helping to transport liquid through the lacunar system. The plug disk might fill the hole in the host's cuticle after the old externa drop off. The results allow us to make first assumptions on transport mechanisms in Rhizocephala.


Subject(s)
Gastropoda , Musculoskeletal System , Animals , X-Ray Microtomography , Crustacea , Genitalia
2.
J Invertebr Pathol ; 198: 107913, 2023 06.
Article in English | MEDLINE | ID: mdl-36940868

ABSTRACT

Cancer-like neoplasms are extremely rarely present in arthropods, particularly in crustaceans. Thus, it is assumed that these animals have some efficient cancer-preventing mechanisms. However, several cases of cancer-like neoplasms are described in crustaceans, though only for the Decapoda. We identified a tumor in the parasitic barnacle Peltogaster paguri (Cirripedia: Rhizocephala), and described its histological structure. A spherical cell mass consisting mostly of roundish cells with big translucent nuclei, prominent nucleoli, and sparse chromatin, and of cells with condensed chromosomes, was found in the main trunk of the P. paguri rootlet system. Numerous mitoses were observed in this area. Such tissue organization is utterly uncharacteristic of the Rhizocephala. Based on acquired histological data, we assume that this tumor is a cancer-like neoplasm. This is the first report of a tumor identified in the rhizocephalans, as well as in non-decapod crustaceans as a whole.


Subject(s)
Arthropods , Neoplasms , Parasites , Thoracica , Animals , Host-Parasite Interactions , Neoplasms/veterinary
3.
Arthropod Struct Dev ; 70: 101190, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785583

ABSTRACT

Specialized morphology of diverse parasitic crustaceans reflects their adaptations to an endoparasitic lifestyle. Rhizocephalan barnacles are one of the most highly modified obligatory parasites of other crustaceans. Comprehension of the functional morphology of rhizocephalans could elucidate the main evolutionary trends not only inside parasitic barnacles, but in parasitism as a whole. Despite that, the available morphological information on the rhizocephalans is very fragmented. In this study, we examined the organization and ultrastructural features in different parts of the interna of Peltogaster reticulata (fam. Peltogastridae). The main trunk cuticle is much thicker than that of the side branches due to the different functions of these body parts. The central lumen in the main trunk is lined by an extracellular matrix, while the side branches are not. Muscular fibers are only present in the body wall of the main trunk, where they are organized as a "wicker basket". Furthermore, functional differentiation can be found at the ultrastructural level in the cells of the rootlets: there are distinct cell types both in hypodermal and axial cell layers. The rootlets of P. reticulata are covered by a network of the host's neurons and capillaries.


Subject(s)
Thoracica , Animals , Host-Parasite Interactions , Thoracica/anatomy & histology
4.
Arthropod Struct Dev ; 60: 101009, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33307518

ABSTRACT

Parasitic rhizocephalan barnacles induce morphological, physiological, and behavioural changes in their hosts. The mechanisms of these intimate host-parasite interactions remain unknown. We have shown previously that rootlets of the internae of Peltogasterella gracilis and Peltogaster paguri penetrate the ganglion's envelope of their hermit crab hosts and form specialised structures in the ganglion periphery, the so-called goblet-shaped organs. Here, we examine the gross morphology and ultrastructure of these goblet-shaped organs in the interna of Sacculina pilosella. They consist of three layers of cells; in the intermediate layer of the organs, unusual lamellar bodies and muscle cells were found. Extensive degeneration of the host nervous tissue was observed in the funnel of the goblet-shaped organs. We conclude that the ability to penetrate into the host's nervous tissue could be a common trait in rhizocephalans. The goblet-shaped organs may play a key role in the host-parasite relationships by enabling the parasite to influence the host via hormones and neurotransmitters.


Subject(s)
Brachyura/anatomy & histology , Host-Parasite Interactions , Thoracica/anatomy & histology , Animals , Brachyura/parasitology , Brachyura/ultrastructure , Microscopy , Microscopy, Electron, Transmission , Nervous System/anatomy & histology , Nervous System/ultrastructure , Thoracica/ultrastructure
5.
Arthropod Struct Dev ; 46(2): 230-235, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27871863

ABSTRACT

Rhizocephalan parasites have a peculiar life cycle, and their adults lost almost all traits found usually in Crustacea. Despite some data on anatomy and ultrastructure of interna of Peltogastridae, some crucial aspects of morphology are still unknown. For example, there is only one mentioning of myocytes found in interna of Rhizocephalans (Sacculina carcini). So we aimed at studying the muscular system of the interna of Peltogaster paguri using serial histological sectioning and fluorescent staining (TRITC-labeled phalloidin) with confocal microscopy. Within the wall of the main trunk we found striated muscular fibers. The majority of these fibers form a unidirectional single spiral. There are additional small fibers that connect the coils of the large spiral. The density of muscular fibers is highest near the externa stalk, and the number of muscle fibers decreases towards the distal part of the main trunk. We suggest that such a muscular system could provide peristaltic movements of the main trunk and the transport of nutrients through the interna.


Subject(s)
Thoracica/anatomy & histology , Animals , Female , Microscopy, Confocal , Muscles/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...