Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2476: 111-128, 2022.
Article in English | MEDLINE | ID: mdl-35635700

ABSTRACT

Continuing progress in super-resolution microscopy enables the study of sub-chromosomal chromatin organization in single cells with unprecedented detail. Here we describe refined methods for pulse-chase replication labeling of individual chromosome territories (CTs) and replication domain units in mammalian cell nuclei, with specific focus on their application to three-dimensional structured illumination microscopy (3D-SIM). We provide detailed protocols for highly efficient electroporation-based delivery or scratch loading of cell-impermeable fluorescent nucleotides for live-cell studies. Furthermore, we describe the application of (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU) and 5-vinyl-2'-deoxyuridine (VdU) for the in situ detection of segregated chromosome territories and sister chromatids with minimized cytotoxic side effects.


Subject(s)
Cell Nucleus , Chromatin , Animals , Chromatids , Chromatin/genetics , Mammals , Microscopy/methods
2.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: mdl-32967822

ABSTRACT

Three-dimensional (3D) chromatin organization plays a key role in regulating mammalian genome function; however, many of its physical features at the single-cell level remain underexplored. Here, we use live- and fixed-cell 3D super-resolution and scanning electron microscopy to analyze structural and functional nuclear organization in somatic cells. We identify chains of interlinked ~200- to 300-nm-wide chromatin domains (CDs) composed of aggregated nucleosomes that can overlap with individual topologically associating domains and are distinct from a surrounding RNA-populated interchromatin compartment. High-content mapping uncovers confinement of cohesin and active histone modifications to surfaces and enrichment of repressive modifications toward the core of CDs in both hetero- and euchromatic regions. This nanoscale functional topography is temporarily relaxed in postreplicative chromatin but remarkably persists after ablation of cohesin. Our findings establish CDs as physical and functional modules of mesoscale genome organization.

3.
Nature ; 574(7779): 571-574, 2019 10.
Article in English | MEDLINE | ID: mdl-31645724

ABSTRACT

To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes1. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex2. How this pathway reflects and influences the three-dimensional nuclear architecture is not known. Here we use super-resolution microscopy to show that 53BP1 and RIF1 form an autonomous functional module that stabilizes three-dimensional chromatin topology at sites of DNA breakage. This process is initiated by accumulation of 53BP1 at regions of compact chromatin that colocalize with topologically associating domain (TAD) sequences, followed by recruitment of RIF1 to the boundaries between such domains. The alternating distribution of 53BP1 and RIF1 stabilizes several neighbouring TAD-sized structures at a single DBS site into an ordered, circular arrangement. Depletion of 53BP1 or RIF1 (but not shieldin) disrupts this arrangement and leads to decompaction of DSB-flanking chromatin, reduction in interchromatin space, aberrant spreading of DNA repair proteins, and hyper-resection of DNA ends. Similar topological distortions are triggered by depletion of cohesin, which suggests that the maintenance of chromatin structure after DNA breakage involves basic mechanisms that shape three-dimensional nuclear organization. As topological stabilization of DSB-flanking chromatin is independent of DNA repair, we propose that, besides providing a structural scaffold to protect DNA ends against aberrant processing, 53BP1 and RIF1 safeguard epigenetic integrity at loci that are disrupted by DNA breakage.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Genomic Instability , Nucleic Acid Conformation , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/chemistry , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Humans , Telomere-Binding Proteins/deficiency , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/deficiency , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
Nat Protoc ; 12(5): 1011-1028, 2017 May.
Article in English | MEDLINE | ID: mdl-28406495

ABSTRACT

3D structured illumination microscopy (3D-SIM) is the super-resolution technique of choice for multicolor volumetric imaging. Here we provide a validated sample preparation protocol for labeling nuclei of cultured mammalian cells, image acquisition and registration practices, and downstream image analysis of nuclear structures and epigenetic marks. Using immunostaining and replication labeling combined with image segmentation, centroid mapping and nearest-neighbor analyses in open-source environments, 3D maps of nuclear structures are analyzed in individual cells and normalized to fluorescence standards on the nanometer scale. This protocol fills an unmet need for the application of 3D-SIM to the technically challenging nuclear environment, and subsequent quantitative analysis of 3D nuclear structures and epigenetic modifications. In addition, it establishes practical guidelines and open-source solutions using ImageJ/Fiji and the TANGO plugin for high-quality and routinely comparable data generation in immunostaining experiments that apply across model systems. From sample preparation through image analysis, the protocol can be executed within one week.


Subject(s)
Cell Nucleus , Imaging, Three-Dimensional/methods , Lighting , Microscopy/methods , Animals
5.
Nat Protoc ; 12(5): 988-1010, 2017 May.
Article in English | MEDLINE | ID: mdl-28406496

ABSTRACT

Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d.


Subject(s)
Lighting , Microscopy/methods , Animals , Artifacts , Microscopy/instrumentation , Quality Control
6.
Methods Mol Biol ; 1431: 127-40, 2016.
Article in English | MEDLINE | ID: mdl-27283306

ABSTRACT

Recent advances in super-resolution microscopy enable the study of subchromosomal chromatin organization in single cells with unprecedented detail. Here we describe refined methods for pulse-chase replication labeling of individual chromosome territories (CTs) and replication domain units in mammalian cell nuclei, with specific focus on their application to three-dimensional structured illumination microscopy (3D-SIM). We provide detailed protocols for highly efficient electroporation-based delivery or scratch loading of cell impermeable fluorescent nucleotides for live cell studies. Furthermore we describe the application of (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU) for the in situ detection of segregated chromosome territories with minimized cytotoxic side effects.


Subject(s)
Chromatin/ultrastructure , Chromosomes, Mammalian/ultrastructure , Imaging, Three-Dimensional/methods , Animals , Cell Line , Cell Nucleus/genetics , Chromatin/metabolism , Chromosome Segregation , Chromosomes, Mammalian/genetics , DNA Replication , Mice , Microscopy, Fluorescence , Replication Origin
SELECTION OF CITATIONS
SEARCH DETAIL
...