Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 14104, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30237416

ABSTRACT

We develop a nonlinear theory of the electronic transport in superconductors in the framework of the time-dependent Ginzburg-Landau (TDGL) equation. We utilize self-consistent Gaussian approximation and reveal the conditions under which the current-voltage V(I) dependence (I-V characteristics) acquires an S-shape form leading to switching instabilities. We demonstrate that in two-dimensions the emergence of such an instability is a hallmark of the Berezinskii-Kosterlitz-Thouless (BKT) transition that we have detected by transport measurements of titanium nitride (TiN) films. Our theoretical findings compare favorably with our experimental results.

2.
Sci Rep ; 8(1): 4082, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29511317

ABSTRACT

Three decades after the prediction of charge-vortex duality in the critical vicinity of the two-dimensional superconductor-insulator transition (SIT), one of the fundamental implications of this duality-the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that should occur on the insulating side of the SIT-has remained unobserved. The dual picture of the process points to the existence of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation of the charge BKT transition on the insulating side of the SIT in 10 nm thick NbTiN films, identified by the BKT critical behavior of the temperature and magnetic field dependent resistance, and map out the magnetic-field dependence of the critical temperature of the charge BKT transition. Finally, we ascertain the effects of the finite electrostatic screening length and its divergence at the magnetic field-tuned approach to the superconductor-insulator transition.

3.
Sci Rep ; 7(1): 1718, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28496099

ABSTRACT

A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossover in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. Our findings demonstrate the prime importance of disorder in dimensional crossover effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...