Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Curr Opin Struct Biol ; 87: 102867, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889500

ABSTRACT

Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.

2.
Curr Opin Cell Biol ; 87: 102328, 2024 04.
Article in English | MEDLINE | ID: mdl-38340567

ABSTRACT

Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.


Subject(s)
Cytoskeleton , Mechanotransduction, Cellular , Animals , Mechanotransduction, Cellular/physiology , Cytoplasm , Cytoskeleton/metabolism , Cell Membrane , Stem Cells , Cell Nucleus/metabolism , Mammals
3.
Nat Cell Biol ; 26(2): 207-218, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302719

ABSTRACT

Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.


Subject(s)
Hair Follicle , Mammals , Animals , Cell Shape , Epithelium , Morphogenesis , Cell Division , Hair Follicle/metabolism
5.
Nature ; 623(7988): 828-835, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968399

ABSTRACT

The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.


Subject(s)
Cell Transformation, Neoplastic , Extracellular Matrix , Skin Neoplasms , Tumor Microenvironment , Animals , Mice , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Collagen/metabolism , Epidermis/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Skin Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Ear/pathology , Collagenases/metabolism , Aging , Ultraviolet Rays , Mutant Proteins/genetics , Mutant Proteins/metabolism
7.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36930528

ABSTRACT

The Company of Biologists' 2022 workshop on 'Cell State Transitions: Approaches, Experimental Systems and Models' brought together an international and interdisciplinary team of investigators spanning the fields of cell and developmental biology, stem cell biology, physics, mathematics and engineering to tackle the question of how cells precisely navigate between distinct identities and do so in a dynamic manner. This second edition of the workshop was organized after a successful virtual workshop on the same topic that took place in 2021.


Subject(s)
Stem Cells , Congresses as Topic , Cell Biology , Developmental Biology
8.
Methods Mol Biol ; 2600: 291-296, 2023.
Article in English | MEDLINE | ID: mdl-36587105

ABSTRACT

The advent of high-throughput sequencing techniques has revolutionized biological research. One such method is RNA sequencing, which has become a relatively affordable and routine method for quantifying and comparing gene expression changes over desired experimental conditions. Along with the popularity of the method, a myriad of user-friendly, open-source computational tools have also emerged for differential gene expression analyses. Correspondingly, decades of mechanobiology research have established that mechanical cues, both alone and/or in combination with biochemical signals, can be powerful regulators of transcriptional programs and consequently cell state/fate transitions. Thus, it has become possible to investigate both universal and specific temporally resolved transcriptional responses upon mechanical stimulation genome-wide. This chapter will describe methods to analyze transcriptional changes in response to extrinsic mechanical stretch.


Subject(s)
Genome , High-Throughput Nucleotide Sequencing , Cell Differentiation , Gene Expression , Sequence Analysis, RNA , Gene Expression Profiling/methods
9.
Cell ; 185(19): 3638-3638.e1, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113430

ABSTRACT

Cells are continuously exposed to tissue-specific extrinsic forces that are counteracted by cell-intrinsic force generation through the actomyosin cytoskeleton and alterations in the material properties of various cellular components, including the nucleus. Forces impact nuclei both directly through inducing deformation, which is sensed by various mechanosensitive components of the nucleus, as well as indirectly through the actomyosin cytoskeleton and mechanosensitive pathways activated in the cytoplasm. To view this SnapShot, open or download the PDF.


Subject(s)
Actomyosin , Mechanotransduction, Cellular , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Mechanotransduction, Cellular/physiology
10.
EMBO J ; 41(17): e111650, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35899396

ABSTRACT

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Subject(s)
Mitogen-Activated Protein Kinases , Muscle, Skeletal , Animals , MAP Kinase Kinase Kinases , Mice , Mitogen-Activated Protein Kinases/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Phosphorylation , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/genetics
11.
Article in English | MEDLINE | ID: mdl-34187806

ABSTRACT

Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.


Subject(s)
Cell Nucleus , Mechanotransduction, Cellular , Cell Differentiation , Chromatin , Genome , Mechanotransduction, Cellular/physiology
12.
Nat Cell Biol ; 23(7): 771-781, 2021 07.
Article in English | MEDLINE | ID: mdl-34239060

ABSTRACT

Tissue turnover requires activation and lineage commitment of tissue-resident stem cells (SCs). These processes are impacted by ageing, but the mechanisms remain unclear. Here, we addressed the mechanisms of ageing in murine hair follicle SCs (HFSCs) and observed a widespread reduction in chromatin accessibility in aged HFSCs, particularly at key self-renewal and differentiation genes, characterized by bivalent promoters occupied by active and repressive chromatin marks. Consistent with this, aged HFSCs showed reduced ability to activate bivalent genes for efficient self-renewal and differentiation. These defects were niche dependent as the transplantation of aged HFSCs into young recipients or synthetic niches restored SC functions. Mechanistically, the aged HFSC niche displayed widespread alterations in extracellular matrix composition and mechanics, resulting in mechanical stress and concomitant transcriptional repression to silence promoters. As a consequence, increasing basement membrane stiffness recapitulated age-related SC changes. These data identify niche mechanics as a central regulator of chromatin state, which, when altered, leads to age-dependent SC exhaustion.


Subject(s)
Cell Differentiation , Cell Self Renewal , Cellular Senescence , Chromatin Assembly and Disassembly , Hair Follicle/physiology , Promoter Regions, Genetic , Stem Cell Niche , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cell Lineage , Cell Self Renewal/genetics , Cells, Cultured , Cellular Senescence/genetics , Extracellular Matrix/physiology , Gene Silencing , Hair Follicle/cytology , Hair Follicle/metabolism , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Mice, Knockout , Skin Aging , Stem Cells/metabolism , Stress, Mechanical , Transcription, Genetic
13.
Mol Biol Cell ; 32(18): 1724-1736, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34081532

ABSTRACT

The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin-based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.


Subject(s)
Actin Cytoskeleton/metabolism , Actomyosin , Antigens, CD/metabolism , Cadherins/metabolism , Calcium Signaling , Mechanotransduction, Cellular , Actomyosin/metabolism , Adherens Junctions/physiology , Antigens, CD/genetics , Biomechanical Phenomena , Cadherins/genetics , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Calcium Signaling/drug effects , Cytochalasin D/pharmacology , Filamins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Ion Channels/genetics , Ion Channels/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Protein Interaction Maps , p21-Activated Kinases/metabolism , rac GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
14.
Cell ; 181(4): 800-817.e22, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32302590

ABSTRACT

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.


Subject(s)
Cell Nucleus/physiology , Heterochromatin/physiology , Mechanotransduction, Cellular/physiology , Animals , Cell Line , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/physiology , Heterochromatin/metabolism , Humans , Male , Mechanoreceptors/physiology , Mesenchymal Stem Cells , Mice , Stress, Mechanical
15.
Cell ; 181(3): 604-620.e22, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259486

ABSTRACT

During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.


Subject(s)
Epidermal Cells/metabolism , Epidermis/growth & development , Skin/growth & development , Animals , Animals, Outbred Strains , Cell Differentiation/physiology , Cell Division/physiology , Cell Lineage/genetics , Cell Proliferation/physiology , Cells, Cultured , Epidermal Cells/pathology , Epidermis/metabolism , Female , Male , Mice , Mice, Transgenic , Stem Cells/cytology
16.
J Invest Dermatol ; 140(2): 284-290, 2020 02.
Article in English | MEDLINE | ID: mdl-31326398

ABSTRACT

Tissue shape emerges from the collective mechanical properties and behavior of individual cells and the ways by which they integrate into the surrounding tissue. Tissue architecture and its dynamic changes subsequently feed back to guide cell behavior. The skin is a dynamic, self-renewing barrier that is subjected to large-scale extrinsic mechanical forces throughout its lifetime. The ability to withstand this constant mechanical stress without compromising its integrity as a barrier requires compartment-specific structural specialization and the capability to sense and adapt to mechanical cues. This review discusses the unique mechanical properties of the skin and the importance of signals that arise from mechanical communication between cells and their environment.


Subject(s)
Mechanotransduction, Cellular , Skin Physiological Phenomena , Skin/cytology , Animals , Humans , Stress, Mechanical
17.
Curr Opin Genet Dev ; 55: 46-51, 2019 04.
Article in English | MEDLINE | ID: mdl-31112907

ABSTRACT

The skin epidermis is a constantly renewing stratified epithelium that provides essential protective barrier functions throughout life. Epidermal stratification is governed by a step-wise differentiation program that requires precise spatiotemporal control of gene expression. How epidermal self-renewal and differentiation are regulated remains a fundamental open question. Cell-intrinsic and cell-extrinsic mechanisms that modify chromatin structure and interactions have been identified as key regulators of epidermal differentiation and stratification. Here, we will review the recent advances in our understanding of how chromatin modifiers, tissue-specific transcription factors, and force-induced nuclear remodeling processes function to shape chromatin and to control epidermal tissue development and homeostasis.


Subject(s)
Cell Differentiation , Cell Nucleus/genetics , Chromatin Assembly and Disassembly/genetics , Epidermis/physiology , Epigenesis, Genetic , Gene Expression Regulation , Homeostasis , Animals , Humans
19.
J Cell Sci ; 131(15)2018 08 13.
Article in English | MEDLINE | ID: mdl-30030370

ABSTRACT

Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.


Subject(s)
Carrier Proteins/metabolism , Endothelial Cells/metabolism , KRIT1 Protein/metabolism , rho-Associated Kinases/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Blotting, Western , Cadherins/genetics , Cadherins/metabolism , Carrier Proteins/genetics , Cattle , Endothelial Cells/cytology , Flow Cytometry , Fluorescent Antibody Technique , Human Umbilical Vein Endothelial Cells , Humans , Immunoprecipitation , KRIT1 Protein/genetics , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish , rho-Associated Kinases/genetics
20.
Mol Cancer Res ; 16(5): 777-790, 2018 05.
Article in English | MEDLINE | ID: mdl-29431617

ABSTRACT

Interstitial fluid pressure (IFP) presents a barrier to drug uptake in solid tumors, including the aggressive primary brain tumor glioblastoma (GBM). It remains unclear how fluid dynamics impacts tumor progression and can be targeted therapeutically. To address this issue, a novel telemetry-based approach was developed to measure changes in IFP during progression of GBM xenografts. Antisecretory factor (AF) is an endogenous protein that displays antisecretory effects in animals and patients. Here, endogenous induction of AF protein or exogenous administration of AF peptide reduced IFP and increased drug uptake in GBM xenografts. AF inhibited cell volume regulation of GBM cells, an effect that was phenocopied in vitro by the sodium-potassium-chloride cotransporter 1 (SLC12A2/NKCC1) inhibitor bumetanide. As a result, AF induced apoptosis and increased survival in GBM models. In vitro, the ability of AF to reduce GBM cell proliferation was phenocopied by bumetanide and NKCC1 knockdown. Next, AF's ability to sensitize GBM cells to the alkylating agent temozolomide, standard of care in GBM patients, was evaluated. Importantly, combination of AF induction and temozolomide treatment blocked regrowth in GBM xenografts. Thus, AF-mediated inhibition of cell volume regulation represents a novel strategy to increase drug uptake and improve outcome in GBM. Mol Cancer Res; 16(5); 777-90. ©2018 AACR.


Subject(s)
Glioblastoma/therapy , Animals , Cell Line, Tumor , Cell Proliferation , Cell Size , Disease Progression , Glioblastoma/pathology , Humans , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...