Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14385, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658127

ABSTRACT

Breeding programs rely on light wavelength, intensity, and photoperiod for rapid success. In this study, we investigated the ability of Ag/ZnO nanoparticles (NPs) to improve the photosynthesis and growth of wheat under simulated full solar spectrum conditions. The world population is increasing rapidly, it is necessary to increase the number of crops in order to ensure the world's food security. Conventional breeding is time-consuming and expensive, so new techniques such as rapid breeding are needed. Rapid breeding shows promise in increasing crop yields by controlling photoperiod and environmental factors in growth regulators. However, achieving optimum growth and photosynthesis rates is still a challenge. Here, we used various methods to evaluate the effects of Ag/ZnO NPs on rice seeds. Using bioinformatics simulations, we evaluated the light-harvesting efficiency of chlorophyll a in the presence of Ag/ZnO NPs. Chemically synthesized Ag/ZnO nanoparticles were applied to rice grains at different concentrations (0-50 mg/L) and subjected to a 12-h preparation time. Evaluation of seed germination rate and growth response in different light conditions using a Light Emitting Diode (LED) growth chamber that simulates a rapid growth system. The analysis showed that the surface plasmon resonance of Ag/ZnO NPs increased 38-fold, resulting in a 160-fold increase in the light absorption capacity of chlorophyll. These estimates are supported by experimental results showing an 18% increase in the yield of rice seeds treated with 15 mg/L Ag/ZnO NPs. More importantly, the treated crops showed a 2.5-fold increase in growth and a 1.4-fold increase in chlorophyll content under the simulated full sun spectrum (4500 lx) and a 16-h light/8-h dark photoperiod. More importantly, these effects are achieved without oxidative or lipid peroxidative damage. Our findings offer a good idea to increase crop growth by improving photosynthesis using Ag/ZnO nanoparticle mixture. To develop this approach, future research should go towards optimizing nanoparticles, investigating the long-term effects, and exploring the applicability of this process in many products. The inclusion of Ag/ZnO NPs in rapid breeding programs has the potential to transform crops by reducing production and increasing agricultural productivity.


Subject(s)
Seedlings , Zinc Oxide , Triticum , Chlorophyll A , Plant Breeding , Photosynthesis , Chlorophyll , Crops, Agricultural
2.
Sci Rep ; 13(1): 10277, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355717

ABSTRACT

Multiphoton absorbing upconversion nanoparticles are emerging as bioimaging materials but are limited by the low quantum yield of their visible fluorescence. This article contains colloids of graphene quantum dots (GQDs), Neodymium, and Cobalt doped Graphene Quantum dots (Co-GQDs and Nd-GQDs) surrounded by carboxylic acids are synthesized which especially are suitable for bio applications; in this way, carboxylic acid groups exchanged by Amoxicillin as an antibiotic with bactericidal activity. The XRD diffraction method, TEM microscope, UV-Vis, and photoluminescence spectroscopies characterize the synthesized materials. The synthesized Quantum dots (QDs) exhibit upconversion properties and their emission is centered at 480 nm, but a red shift was observed with the increase of the excitation wavelength. In the emission spectra of synthesized QDs that can be related to the defect levels introduced by passivation of the QDs in the structure, the results show that with the interaction of the surface QDs with more carboxylic groups, the redshift is not observed. As the results indicate an increase in the intensity of upconversion emission is recorded for Co-GQDs and Nd-GQDs. The absolute quantum efficiency (QY) for Co-GQDs and Nd-GQDs were determined to be 41% and 100% more than GQDs respectively. DFT calculations indicate a strong bond between graphene and cobalt and Neodymium atoms. In doped materials, there are trap levels between the band gap of the GQDs which are responsible for increasing the intensity of the upconversion phenomenon.


Subject(s)
Graphite , Quantum Dots , Graphite/chemistry , Neodymium , Quantum Dots/chemistry , Cobalt , Fluorescence
3.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839053

ABSTRACT

A comprehensive study has been conducted on ultra-broadband optically pumped quantum dot (QD) reflective semiconductor optical amplifiers (QD-RSOAs). Furthermore, little work has been done on broadband QD-RSOAs with an optical pump. About 1 µm optical bandwidth, spanning 800 nm up to 1800 nm, is supported for the suggested device by superimposing nine groups of QDs. It has been shown that the device can be engineered to amplify a selected window or a group of desired windows. Moreover, the operation of the device has been thoroughly investigated by solving the coupled differential rate and signal propagation equations. A numerical algorithm has been suggested to solve these equations. As far as we are concerned, a broadband optically pumped QD-RSOA that can operate as a filter has been introduced.

4.
Nanomaterials (Basel) ; 12(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35564132

ABSTRACT

In this paper, a high-resolution full-color transparent monitor is designed and fabricated using the synthesized quantum dots for the first time. For this purpose, about 100 compounds that had the potential to emit blue, green, and red lights were selected, and simulation was performed using the discrete dipole approximation (DDA) method, in which the shell layer was selected to be SiO2 or TiO2 in the first step. Among the simulated compounds with SiO2 or TiO2 shells, Se/SiO2 and BTiO3/SiO2 were selected as blue light emitters with high intensity and narrow bandwidth. Accordingly, CdSe/SiO2 nanoparticles were selected as green light emitters and Au/TiO2 for the red light. As the surface of the nanoparticles in their optical properties is important, reactivation of the nanoparticles' surface is required to reach the high-intensity peak and resolution. To this end, in the second step, the surface of Se and CdSe nanoparticles reacted with ethanolamine, which can make a strong bond with cadmium atoms. The band structure and optical properties were obtained by the density functional theory (DFT) method. The Se/Ethanolamine and CdSe/Ethanolamine were experimentally synthesized to evaluate the theoretical results, and their optical properties were measured. To fabricate a transparent monitor, Se/Ethanolamine, CdSe/SiO2, and Au/TiO2 nanoparticles were dispersed in polyvinyl alcohol (PVA) solved in water and deposited on the glass by the doctor blading technique. Finally, high-resolution videos and images were displayed on the fabricated monitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...