Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(1): 113-120, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38147530

ABSTRACT

Although chirality plays an important role in the natural world, it has also attracted much scientific attention in nanotechnology, in particular, spintronics and bioapplications. Chiral carbon dots (CDs) are promising nanoparticles for sensing and bioimaging since they are biocompatible, ecofriendly, and free from toxic elements. Herein, green and red emissive chiral CDs are fabricated via surface modification treatment of achiral CDs at room temperature. After modification with l-cysteine molecules, the treated CDs demonstrate an intense chiral signal in the region of 200-300 nm with a dissymmetry factor up to 2.3 × 10-4 and high photoluminescence quantum yields of 19% and 15% for green and red emission bands, respectively. These CDs preserve their chiral signal in different ion systems, such as those with pH changes or in the presence of metal ions, along with remarkably low cytotoxicity, making them potential candidates for use as photoluminescent labels for biological objects.


Subject(s)
Nanoparticles , Quantum Dots , Cysteine , Carbon/chemistry , Quantum Dots/chemistry , Ions
2.
J Phys Chem Lett ; 14(50): 11522-11528, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38091348

ABSTRACT

The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.

3.
Nanoscale ; 15(19): 8845-8853, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37114916

ABSTRACT

Chemically synthesized carbon dots (CDs) have attracted a lot of attention as an eco-friendly and cost-efficient light-emitting material, and functionalization of CD surfaces with additives of different natures is a useful way to control their properties. In this study, we show how a post-synthetic treatment of CDs with citric acid, benzoic acid, urea and o-phenylenediamine changes their chemical composition and optical properties. In particular, it results in the formation of carboxyl/imide/carbonyl groups at the CD surface, leading to the appearance of additional blue (or for CDs treated with phenylenediamine, blue and green) emissive optical centers on top of the remaining emission from the original CDs. Most importantly, the increased oxidation degree alongside a decreased relative amount of carbon and nitrogen in such treated CDs decreases their highest occupied molecular orbital (HOMO) energy level by up to 0.9 eV (the maximal value was observed for CDs treated with o-phenylenediamine). Moreover, the Fermi energy level shifted above the lowest unoccupied molecular orbital (LUMO) energy level for some of the treated CD samples. Thus, the energy structure of CDs can be tuned and optimized for further applications through the functionalization of their surface with organic additives.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234443

ABSTRACT

Today, the development of nanomaterials with sensing properties attracts much scientific interest because of the demand for low-cost nontoxic colloidal nanoprobes with high sensitivity and selectivity for various biomedical and environment-related applications. Carbon dots (CDs) are promising candidates for these applications as they demonstrate unique optical properties with intense emissions, biocompatibility, and ease of fabrication. Herein, we developed synthesis protocols to obtain CDs based on o-phenylenediamine with a variety of optical responses depending on additional precursors and changes in the reaction media. The obtained CDs are N-doped (N,S-doped in case of thiourea addition) less than 10 nm spherical particles with emissions observed in the 300−600 nm spectral region depending on their chemical composition. These CDs may act simultaneously as absorptive/fluorescent sensing probes for solvent polarity with ∆S/∆ENT up to 85, for ∆ENT from 0.099 to 1.0 and for pH values in the range of 3.0−8.0, thus opening an opportunity to check the pH in non-pure water or a mixture of solvents. Moreover, CDs preserve their optical properties when embedded in cellulose strips that can be used as sensing probes for fast and easy pH checks. We believe that the resulting dual-purpose sensing nano probes based on CDs will have high demand in various sensing applications.

5.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430213

ABSTRACT

In recent years, there has been rapid progress in the development of photonic devices based on lead halide perovskite nanocrystals since they possess a set of unique optical and charge transport properties. However, the main limiting factor for their subsequent application is poor stability against exposure to adverse environmental conditions. In this work, a study of a composite material based on perovskite CsPbBr3 nanocrystals embedded in porous silica microspheres is presented. We developed two different approaches to change the interface between nanocrystals and the surface of the microsphere pores: surface treatment of (i) nanocrystals or (ii) microspheres. The surface modification with tetraethylorthosilicate molecules not only increased stability but also improved the optical responses of the composite material. The position of the emission band remained almost unchanged, but its lifetime increased significantly compared to the initial value. The improvement of the optical performance via surface modification with tetraethylorthosilicate molecules also works for the lead-free Bi-doped Cs2AgInCl6 double perovskite nanocrystals leading to increased stability of their optical responses at ambient conditions. These results clearly demonstrate the advantage of a composite material that can be used in novel photonic devices with improved performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...