Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 27(17): 4717-4725, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34362809

ABSTRACT

PURPOSE: The mainstay of treatment for basal cell carcinoma (BCC) is surgical excision, which can result in significant associated morbidity, particularly for patients with recurrent tumors. We previously conducted a drug repositioning screen using molecular data from human BCCs and identified histone deacetylase (HDAC) inhibitors as a potential treatment for BCC. Here we conduct the first proof-of-principle study of a topical pan-HDAC inhibitor, remetinostat, in human BCC. PATIENTS AND METHODS: We conducted a phase II, open-label, single-arm, single-institution trial of a topical HDAC inhibitor. Participants with at least one BCC were recruited. All participants applied 1% remetinostat gel three times daily for 6 weeks, with measurements of tumor diameter conducted at baseline and week 8. Surgical excision of the remaining tumor was conducted at the end of the study and microscopic evaluation was performed. RESULTS: Thirty-three per-protocol tumors from 25 participants were included in the analysis. The overall response rate, defined as the proportion of tumors achieving more than 30% decrease in the longest diameter from baseline to week 8, was 69.7% [90% confidence interval (CI), 54%-82.5%]. On pathologic examination, 54.8% of tumors demonstrated complete resolution. Pharmacodynamic analysis demonstrated similar levels of acetylated histone H3 in skin tissue before and after treatment, however, phosphorylation was increased. No systemic adverse events were reported. CONCLUSIONS: The HDAC inhibitor remetinostat is a well-tolerated and effective topical treatment for reducing BCC disease burden in a clinically significant manner. This provides in-human validation of HDAC inhibitors as a therapy for BCC.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Administration, Topical , Carcinoma, Basal Cell/drug therapy , Gels , Prospective Studies , Skin Neoplasms/drug therapy , Treatment Outcome
2.
Curr Opin Cell Biol ; 68: 173-180, 2021 02.
Article in English | MEDLINE | ID: mdl-33227657

ABSTRACT

The nucleoskeleton has been associated with partitioning the genome into active and inactive compartments that dictate local transcription factor (TF) activity. However, recent data indicate that the nucleoskeleton and TFs reciprocally influence each other in dynamic TF trafficking pathways through the functions of LEM proteins. While the conserved peripheral recruitment of TFs by LEM proteins has been viewed as a mechanism of repressing transcription, a diversity of release mechanisms from the lamina suggest this compartment serves as a refuge for nuclear TF accumulation for rapid mobilization and signal stability. Detailed mechanisms suggest that TFs toggle between nuclear lamina refuge and nuclear matrix lamin-LEM protein complexes at sites of active transcription. In this review we will highlight emerging LEM functions acting at the interface of chromatin and nucleoskeleton to create TF trafficking networks.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Humans , Nuclear Envelope/metabolism , Nuclear Lamina/metabolism
4.
Cell ; 176(1-2): 198-212.e15, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30503211

ABSTRACT

Understanding transcription factor navigation through the nucleus remains critical for developing targeted therapeutics. The GLI1 transcription factor must maintain maximal Hedgehog pathway output in basal cell carcinomas (BCCs), and we have previously shown that resistant BCCs increase GLI1 deacetylation through atypical protein kinase Cι/λ (aPKC) and HDAC1. Here we identify a lamina-associated polypeptide 2 (LAP2) isoform-dependent nuclear chaperoning system that regulates GLI1 movement between the nuclear lamina and nucleoplasm to achieve maximal activation. LAP2ß forms a two-site interaction with the GLI1 zinc-finger domain and acetylation site, stabilizing an acetylation-dependent reserve on the inner nuclear membrane (INM). By contrast, the nucleoplasmic LAP2α competes with LAP2ß for GLI1 while scaffolding HDAC1 to deacetylate the secondary binding site. aPKC functions to promote GLI1 association with LAP2α, promoting egress off the INM. GLI1 intranuclear trafficking by LAP2 isoforms represents a powerful signal amplifier in BCCs with implications for zinc finger-based signal transduction and therapeutics.


Subject(s)
DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , 3T3 Cells , Animals , Carcinoma, Basal Cell/metabolism , Cell Line , Chromatin , DNA-Binding Proteins/physiology , HEK293 Cells , Hedgehog Proteins/metabolism , Hedgehog Proteins/physiology , Histone Deacetylase 1/metabolism , Humans , Membrane Proteins/physiology , Mice , Molecular Chaperones/metabolism , Nuclear Lamina/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/metabolism , Signal Transduction , Trans-Activators/metabolism , Transcription Factors/metabolism , Zinc Finger Protein GLI1/physiology , Zinc Fingers
5.
Nat Med ; 24(3): 271-281, 2018 03.
Article in English | MEDLINE | ID: mdl-29400712

ABSTRACT

Hedgehog pathway-dependent cancers can escape Smoothened (SMO) inhibition through mutations in genes encoding canonical hedgehog pathway components; however, around 50% of drug-resistant basal cell carcinomas (BCCs) lack additional variants of these genes. Here we use multidimensional genomics analysis of human and mouse drug-resistant BCCs to identify a noncanonical hedgehog activation pathway driven by the transcription factor serum response factor (SRF). Active SRF along with its coactivator megakaryoblastic leukemia 1 (MKL1) binds DNA near hedgehog target genes and forms a previously unknown protein complex with the hedgehog transcription factor glioma-associated oncogene family zinc finger-1 (GLI1), causing amplification of GLI1 transcriptional activity. We show that cytoskeletal activation through Rho and the formin family member Diaphanous (mDia) is required for SRF-MKL-driven GLI1 activation and for tumor cell viability. Remarkably, nuclear MKL1 staining served as a biomarker in tumors from mice and human subjects to predict tumor responsiveness to MKL inhibitors, highlighting the therapeutic potential of targeting this pathway. Thus, our study illuminates, for the first time, cytoskeletal-activation-driven transcription as a personalized therapeutic target for combatting drug-resistant malignancies.


Subject(s)
Carcinoma, Basal Cell/drug therapy , Drug Resistance, Neoplasm/genetics , Serum Response Factor/genetics , Trans-Activators/genetics , Zinc Finger Protein GLI1/genetics , Animals , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/genetics , Hedgehog Proteins , Humans , Mice , Multiprotein Complexes/genetics , Signal Transduction , Transcriptional Activation
6.
JCI Insight ; 2(21)2017 11 02.
Article in English | MEDLINE | ID: mdl-29093271

ABSTRACT

Advanced basal cell carcinomas (BCCs) circumvent Smoothened (SMO) inhibition by activating GLI transcription factors to sustain the high levels of Hedgehog (HH) signaling required for their survival. Unfortunately, there is a lack of efficacious therapies. We performed a gene expression-based drug repositioning screen in silico and identified the FDA-approved histone deacetylase (HDAC) inhibitor, vorinostat, as a top therapeutic candidate. We show that vorinostat only inhibits proliferation of BCC cells in vitro and BCC allografts in vivo at high dose, limiting its usefulness as a monotherapy. We leveraged this in silico approach to identify drug combinations that increase the therapeutic window of vorinostat and identified atypical PKC Ɩ/ʎ (aPKC) as a HDAC costimulator of HH signaling. We found that aPKC promotes GLI1-HDAC1 association in vitro, linking two positive feedback loops. Combination targeting of HDAC1 and aPKC robustly inhibited GLI1, lowering drug doses needed in vitro, in vivo, and ex vivo in patient-derived BCC explants. We identified a bioavailable and selective small-molecule aPKC inhibitor, bringing the pharmacological blockade of aPKC and HDAC1 into the realm of clinical possibility. Our findings provide a compelling rationale and candidate drugs for combined targeting of HDAC1 and aPKC in HH-dependent cancers.


Subject(s)
Carcinoma, Basal Cell/drug therapy , Histone Deacetylase 1/drug effects , Histone Deacetylase Inhibitors/pharmacology , Isoenzymes/drug effects , Protein Kinase C/drug effects , Skin Neoplasms/drug therapy , Allografts , Animals , Carcinoma, Basal Cell/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Computational Biology , Drug Combinations , Drug Discovery , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Hedgehogs/genetics , Hedgehogs/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/chemistry , Isoenzymes/metabolism , Mice , Mice, Knockout , Protein Kinase C/metabolism , Signal Transduction , Transcription Factors/drug effects , Transcription Factors/genetics , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
7.
PLoS One ; 11(12): e0168031, 2016.
Article in English | MEDLINE | ID: mdl-28030567

ABSTRACT

The Hedgehog pathway is a potent regulator of cellular growth and plays a central role in the development of many cancers including basal cell carcinoma (BCC). The majority of BCCs arise from mutations in the Patched receptor resulting in constitutive activation of the Hedgehog pathway. Secondary driver mutations promote BCC oncogenesis and occur frequently due to the high mutational burden resulting from sun exposure of the skin. Here, we uncover novel secondary mutations in Suppressor of Fused (SUFU), the major negative regulator of the Hedgehog pathway. SUFU normally binds to a Hedgehog transcriptional activator, GLI1, in order to prevent it from initiating transcription of Hedgehog target genes. We sequenced tumor-normal pairs from patients with early sporadic BCCs. This resulted in the discovery of nine mutations in SUFU, which were functionally investigated to determine whether they help drive BCC formation. Our results show that four of the SUFU mutations inappropriately activate the Hedgehog pathway, suggesting they may act as driver mutations for BCC development. Indeed, all four of the loss of function SUFU variants were found to disrupt its binding to GLI, leading to constitutive pathway activation. Our results from functional characterization of these mutations shed light on SUFU's role in Hedgehog signaling, tumor progression, and highlight a way in which BCCs can arise.


Subject(s)
Carcinoma, Basal Cell/metabolism , Hedgehog Proteins/metabolism , Mutation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Skin Neoplasms/metabolism , Animals , Carcinogenesis , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Cell Proliferation , Disease Progression , HEK293 Cells , Humans , Mice , Models, Molecular , NIH 3T3 Cells , Protein Conformation , Repressor Proteins/chemistry , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Young Adult , Zinc Finger Protein GLI1/metabolism
8.
Mol Cell Biol ; 35(17): 3083-102, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26124280

ABSTRACT

The ∼230-residue C-terminal tail of the epidermal growth factor receptor (EGFR) is phosphorylated upon activation. We examined whether this phosphorylation is affected by deletions within the tail and whether the two tails in the asymmetric active EGFR dimer are phosphorylated differently. We monitored autophosphorylation in cells using flow cytometry and found that the first ∼80 residues of the tail are inhibitory, as demonstrated previously. The entire ∼80-residue span is important for autoinhibition and needs to be released from both kinases that form the dimer. These results are interpreted in terms of crystal structures of the inactive kinase domain, including two new ones presented here. Deletions in the remaining portion of the tail do not affect autophosphorylation, except for a six-residue segment spanning Tyr 1086 that is critical for activation loop phosphorylation. Phosphorylation of the two tails in the dimer is asymmetric, with the activator tail being phosphorylated somewhat more strongly. Unexpectedly, we found that reconstitution of the transmembrane and cytoplasmic domains of EGFR in vesicles leads to a peculiar phenomenon in which kinase domains appear to be trapped between stacks of lipid bilayers. This artifactual trapping of kinases between membranes enhances an intrinsic functional asymmetry in the two tails in a dimer.


Subject(s)
ErbB Receptors/genetics , ErbB Receptors/ultrastructure , Amino Acid Sequence , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Crystallography, X-Ray , Enzyme Activation/genetics , ErbB Receptors/metabolism , Flow Cytometry , HEK293 Cells , Humans , Molecular Dynamics Simulation , Phosphorylation , Protein Structure, Tertiary , Sequence Deletion/genetics
9.
BMC Evol Biol ; 11: 321, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22047078

ABSTRACT

BACKGROUND: The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. RESULTS: We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. CONCLUSIONS: We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and propose specific hypotheses for experimental investigation. The apicomplexan-specific kinase features reported in this study can be used in the design of selective kinase inhibitors.


Subject(s)
Apicomplexa/enzymology , Evolution, Molecular , Protein Kinases/chemistry , Protein Kinases/genetics , Amino Acid Sequence , Apicomplexa/chemistry , Apicomplexa/genetics , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Kinases/metabolism , Substrate Specificity
10.
Proteins ; 79(1): 99-114, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20938978

ABSTRACT

The catalytic domain of epidermal growth factor receptor (EGFR) is activated by dimerization, which requires allosteric coupling between distal dimerization and catalytic sites. Although crystal structures of EGFR kinases, solved in various conformational states, have provided important insights into EGFR activation by dimerization, the atomic details of how dimerization signals are dynamically coupled to catalytic regions of the kinase core are not fully understood. In this study, we have performed unrestrained and targeted molecular dynamics simulations on the active and inactive states of EGFR, followed by principal component analysis on the simulated trajectories, to identify correlated motions in the EGFR kinase domain upon dimerization. Our analysis reveals that the conformational changes associated with the catalytic functions of the kinase core are highly correlated with motions in the juxtamembrane (JM) and C-terminal tail, two flexible structural elements that play an active role in EGFR kinase activation and dimerization. In particular, the opening and closing of the ATP binding lobe relative to the substrate binding lobe is highly correlated with motions in the JM and C-terminal tail, suggesting that ATP and substrate binding can be coordinated with dimerization through conformational changes in the JM and C-terminal tail. Our study pinpoints key residues involved in this conformational coupling, and provides new insights into the role of the JM and C-terminal tail segments in EGFR kinase functions.


Subject(s)
Cell Membrane/metabolism , ErbB Receptors/chemistry , Amino Acid Motifs , Binding Sites , Cell Membrane/chemistry , ErbB Receptors/metabolism , Humans , Models, Molecular , Molecular Dynamics Simulation , Principal Component Analysis , Protein Structure, Quaternary , Protein Structure, Tertiary
11.
PLoS One ; 5(12): e14310, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21179209

ABSTRACT

BACKGROUND: The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization. CONCLUSION/SIGNIFICANCE: Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation.


Subject(s)
ErbB Receptors/metabolism , Gene Expression Regulation, Enzymologic , Allosteric Site , Amino Acid Sequence , Animals , Bayes Theorem , Catalytic Domain , Computational Biology/methods , Conserved Sequence , DNA Mutational Analysis , Databases, Protein , Dimerization , ErbB Receptors/chemistry , Gene Expression Regulation, Neoplastic , Humans , Molecular Sequence Data , Mutation , Neoplasms/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...