Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 169: 131-138, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27870934

ABSTRACT

Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO4). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg-1 to 16 mg kg-1. The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO4, the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Chromium/chemistry , Environmental Restoration and Remediation/methods , Ferrous Compounds/chemistry , Iron/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Sulfides/chemistry , Chromium/analysis , Hydroxides , Oxides , Soil Pollutants/analysis
2.
J Hazard Mater ; 298: 83-90, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26026959

ABSTRACT

Permeable reactive barriers (PRBs) are efficient technologies for in situ remediation of contaminated groundwater, the effectiveness of which greatly depends on the reactive media filled. Natural pyrite is an iron sulfide material with a very low content of iron and sulfur, and a mining waste which is a potential material for Cr(VI) immobilization. In this study, we conducted a series of batch tests to research the effects of typical environmental factors on Cr(VI) removal and also simulated PRB filled with natural pyrite to investigate its effectiveness, in order to find a both environmentally and economically fine method for groundwater remediation. Batch tests showed that pH had the significant impact on Cr(VI) removal with an apparently higher efficiency under acidic conditions, and dissolved oxygen (DO) would inhibit Cr(VI) reduction; a relatively high initial Cr(VI) concentration would decrease the rate of Cr(VI) sorption; ionic strength and natural organic matter resulted in no significant effects on Cr(VI) removal. Column tests demonstrated that the simulated PRB with natural pyrite as the reactive media was considerably effective for removing Cr(VI) from groundwater, with a sorption capability of 0.6222 mg Cr per gram of natural pyrite at an initial Cr(VI) concentration of 10mg/L at pH 5.5 in an anoxic environment.


Subject(s)
Chromium/isolation & purification , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Iron/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Oxygen/chemistry , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...