Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Med Oncol ; 41(5): 111, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592504

ABSTRACT

The use of doxorubicin (Dox) in the treatment of breast cancer negatively affects the intestines and other tissues. Many studies have proven that probiotics and vitamin D3 have antitumor and intestinal tissue-protecting properties. To achieve effectiveness and minimize side effects, the current study aims to administer Dox together with probiotics (Lactobacillus acidophilus and Lactobacillus casei) and vitamin D3. Forty-two female BALB/c inbred mice were divided into six groups: Group 1 (Control), Group 2 (Dox), Group 3 (Dox and probiotics), Group 4 (Dox and vitamin D3), Group 5 (Dox, probiotics, and vitamin D3), and Group 6 (probiotics and vitamin D3). The 4T1 mouse carcinoma cell line was injected into the mammary fat pad of each mouse. Gene expression was examined using quantitative real-time PCR. The treated groups (except group 6) showed significantly reduced tumor volume and weight compared to the control group (P < 0.05, P < 0.01). Probiotics/vitamin D3 with Dox reduced chemotherapy toxicity and a combination of supplements had a significant protective effect against Dox (P < 0.05, 0.01, 0.001). The treated groups (except 6) had significantly higher expression of Bax/Caspase 3 genes and lower expression of Bcl-2 genes than the control group (P < 0.05, 0.01). Coadministration of Dox with probiotics and vitamin D3 showed promising results in reducing tumor size, protecting intestinal tissue and influencing gene expression, suggesting a strategy to enhance the effectiveness of breast cancer treatment while reducing side effects.


Subject(s)
Lacticaseibacillus casei , Neoplasms , Probiotics , Female , Animals , Mice , Lactobacillus acidophilus , Doxorubicin/pharmacology , Probiotics/pharmacology , Disease Models, Animal , Cholecalciferol/pharmacology , Mice, Inbred BALB C
2.
Phys Rev E ; 104(4-2): 045102, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781466

ABSTRACT

Freezing in charged porous media can induce significant pressure and cause damage to tissues and functional materials. We formulate a thermodynamically consistent theory to model freezing phenomena inside charged heterogeneous porous space. Two regimes are distinguished: free ions in open pore space lead to negligible effects of freezing point depression and pressure. On the other hand, if nanofluidic salt trapping happens, subsequent ice formation is suppressed due to the high concentration of ions in the electrolyte. In this case our theory predicts that freezing starts at a significantly lower temperature compared to pure water. In one dimension, as the temperature goes even lower, ice continuously grows until the salt concentration reaches saturation, all ions precipitate to form salt crystals, and freezing completes. Enormous pressure can be generated if initial salt concentration is high before salt entrapment. We show modifications to the classical nucleation theory due to the trapped salt ions. Interestingly, although the freezing process is enormously changed by trapped salts, our analysis shows that the Gibbs-Thompson equation on confined melting point shift is not affected by the presence of the electrolyte.

3.
J Environ Health Sci Eng ; 18(2): 1581-1593, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33312663

ABSTRACT

BACKGROUND: Mercury (Hg) in dental amalgam is the world's hidden source of mercury contamination. The development of more eco-friendly and cost-effective adsorbents to reduce mercury pollutants in wastewater is highly desirable and is still a major challenge. In this study, a novel nanocomposite was synthesized and used as an efficient adsorbent for the removal of Hg(II) ions from aqueous solution. METHODS: A green and cost-effective method was described to the synthesis of SnO2-ZnO-eggshell nanocomposites using teucrium polium extract as a renewable reductant and mild stabilizer. The biosynthesized nanocomposites were characterized by various techniques. The novel SnO2-ZnO-eggshell nanocomposites were used as an effective adsorbent in the removal of mercury (II) ions. To achieve the maximum absorption efficiency of Hg(II) ions, the effect of operating factors such as pH value, the dose of catalyst, the initial metal concentration of Hg(II) ions, and catalyst type were evaluated. RESULTS: The removal percentage and adsorption capacity of Hg(II) were obtained 99.15% and 396.6 mg.g-1, respectively, under optimal conditions after 5 minutes. The selectivity of SnO2-ZnO-eggshell nanocomposites for the adsorption of metal ions was studied, and the highest selectivity was obtained for adsorption of Hg (II) ions. Furthermore, the SnO2- ZnO-eggshell nanocomposites could be recovered and reused at least three times without considerable loss of their efficiency. CONCLUSIONS: The present approach has advantages such as rapidity, simplicity, selectivity, low cost and, most importantly, the use of nanocomposites containing a bio-waste material of eggshell for removal of Hg(II) ions from aqueous solution.

4.
Nat Commun ; 10(1): 4002, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488823

ABSTRACT

Viscous fingering is a widely observed phenomenon, in which finger-like instabilities occur at the interface of two fluids, whenever a less viscous phase displaces a more viscous phase. This instability is notoriously difficult to control, especially for given viscosity ratio and geometry. Here we demonstrate experimentally the active control of viscous fingering of two given liquids, for given geometry and flow rate in a Hele-Shaw cell. The control is realized by taking advantage of electro-osmotic flows along the surfaces confining the fluid, via applying an external electric field. Depending on the direction of electric field, the induced secondary electro-osmotic flows either assist or oppose the hydraulic flow, effectively reducing or increasing the flow resistance, leading to the control of interface stability. The mechanism of apparent "electrokinetic thinning/thickening" is proposed to explain the experimental observations. Theoretical predictions of linear stability are confirmed experimentally for a broad range of immiscible electrolyte displacements.

5.
Langmuir ; 35(12): 4397-4402, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30798608

ABSTRACT

A numerical and theoretical framework to address the poromechanical effect of capillary stress in complex mesoporous materials is proposed and exemplified for water sorption in cement. We first predict the capillary condensation/evaporation isotherm using lattice-gas simulations in a realistic nanogranular cement model. A phase-field model to calculate moisture-induced capillary stress is then introduced and applied to cement at different water contents. We show that capillary stress is an effective mechanism for eigenstress relaxation in granular heterogeneous porous media, which contributes to the durability of cement.

6.
Phys Rev Lett ; 119(17): 174501, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219442

ABSTRACT

We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.

7.
Phys Rev Lett ; 113(9): 097701, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25216005

ABSTRACT

We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

8.
J Comput Neurosci ; 34(2): 259-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22903565

ABSTRACT

We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson's disease. The event-based nature of the input results in its administration only when it is necessary, which, in general, amounts to fewer applications, and hence, less charge transfer to and from the tissue. The minimum energy nature of the input may also help prolong battery life for implanted stimulus generators. For the example considered, it is shown that the proposed control causes a considerable amount of randomization in the timing of each neuron's next spike, leading to desynchronization for the network.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Computer Simulation , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL