Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Ig ; 32(1): 72-80, 2020.
Article in English | MEDLINE | ID: mdl-31713579

ABSTRACT

BACKGROUND: Clostridioides difficile a Gram-positive, obliged anaerobic, rod-shaped spore-former bacterium, causes a wide spectrum of diseases, ranging from mild, self-limiting diarrhoea to serious diarrhea. Chitosan, a natural polysaccharide, is largely known for its activity against a wide range of microorganisms. Chitosan, in the form of nanofibrils (nanofibrilated chitosan), consists of separated fibers which can be suspended easily in aqueous media. STUDY DESIGN: This paper, for the first time, aims to evaluate the antimicrobial activity of chitosan nanofibers against C. difficile isolates. METHODS: Chitosan nanofibers were characterized through scanning electron microscopy and atomic force microscopy. Minimum inhibitory concentration and minimum bactericidal concentration of chitosan nanofibers against toxigenic C. difficile isolates (with resistance gene: ermB, tetM and tetW) was determined by the standard broth microdilution method. RESULTS: The Miniumum Inhibitory Concentration of chitosan nanofibers for two toxigenic isolates with resistance genes ermB, tetM and tetW, two toxigenic isolates ermB+ tetM+ and the standard strain ATCC 700057 was similar and equal to 0.25 mg/mL. The minimum bactericidal concentration for all isolates was 0.5 mg/mL. CONCLUSIONS: The results demonstrated that chitosan nanofibers exhibit potent antimicrobial activities against multiple toxigenic C. difficile isolates, and the antibacterial effect of chitosan nanofibers against C. difficile isolates with ermB, tetM and tetW resistance genes indicates that interfering with the synthesis of proteins is not the mechanism of action of chitosan nanofibers.


Subject(s)
Anti-Bacterial Agents , Chitosan , Clostridioides difficile , Nanofibers , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Drug Resistance, Bacterial/genetics , Feces/microbiology , Humans , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanofibers/ultrastructure
2.
Indian J Pharm Sci ; 78(1): 73-9, 2016.
Article in English | MEDLINE | ID: mdl-27168684

ABSTRACT

Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for ß-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...