Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Sci Rep ; 14(1): 9381, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654085

ABSTRACT

Erythrocytes are impressive tools for drug delivery, especially to macrophages. Therefore, berberine was loaded into erythrocytes using both hypotonic pre-swelling and endocytosis methods to target macrophages. Physicochemical and kinetic parameters of the resulting carrier cells, such as drug loading/release kinetics, osmotic fragility, and hematological indices, were determined. Drug loading was optimized for the study using Taguchi experimental design and lab experiments. Loaded erythrocytes were targeted to macrophages using ZnCl2 and bis-sulfosuccinimidyl-suberate, and targeting was evaluated using flow cytometry and Wright-Giemsa staining. Differentiated macrophages were stimulated with lipopolysaccharide, and the inflammatory profiles of macrophages were evaluated using ELISA, western blotting, and real-time PCR. Findings indicated that the endocytosis method is preferred due to its low impact on the erythrocyte's structural integrity. Maximum loading achieved (1386.68 ± 22.43 µg/ml) at 1500 µg/ml berberine treatment at 37 °C for 2 h. Berberine successfully inhibited NF-κB translation in macrophages, and inflammatory response markers such as IL-1ß, IL-8, IL-23, and TNF-α were decreased by approximately ninefold, sixfold, twofold, eightfold, and twofold, respectively, compared to the LPS-treated macrophages. It was concluded that berberine-loaded erythrocytes can effectively target macrophages and modulate the inflammatory response.


Subject(s)
Berberine , Cytokines , Erythrocytes , Macrophages , Berberine/pharmacology , Berberine/administration & dosage , Erythrocytes/metabolism , Erythrocytes/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cytokines/metabolism , Animals , Mice , Lipopolysaccharides/pharmacology , RAW 264.7 Cells , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy
2.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498238

ABSTRACT

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Valproic Acid/pharmacology , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Protein p53 , Drug Resistance, Multiple/genetics , Apoptosis , Cell Line, Tumor , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/pharmacology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/pharmacology , Vesicular Transport Proteins/therapeutic use
3.
Cell Biol Int ; 48(6): 861-871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480672

ABSTRACT

The possible interactions of morphine, paynantheine and speciociliatine alkaloids with ATP-binding cassette (ABC) transporters was investigated. The compounds were docked against ABCG2 and ABCB1 to predict the binding mode of alkaloids in active binding sites. The cytotoxicity of morphine, paynantheine and speciociliatine for EPG85.257RDB and MCF7MX cells was determined and ABCB1 and ABCG2 gene and protein expression were determined. The binding score of paynantheine to ABCB1 was higher in the docking studies. Paynantheine and speciociliatine had similar binding scores to ABCB1, but higher binding scores to ABCG2 than did morphine. Paynantheine and speciociliatine were more effective against MCF7MX and EPG85.257RDB cells and showed greater cyctotoxicity in the MTT assay. The effect of morphine and paynantheine on the ABCB1 gene and protein expression suggests these compounds can reduce resistance in cancer patients, but that speciociliatine may not be a suitable candidate because of its increased ABCB1 expression while speciociliatine decreased the expression of ABCG2 in MCF7MX cells. This indicates that speciociliatine is a better candidate for reducing drug resistance in this cell line. Structural modification, drug-metabolizing enzymes and differences in the binding sites could cause functional differences between these compounds.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Morphine , Humans , Morphine/pharmacology , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Drug Resistance, Multiple/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Cell Line, Tumor , MCF-7 Cells , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Molecular Docking Simulation , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female
4.
Epigenomics ; 16(5): 277-292, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356395

ABSTRACT

Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.


DNA changes are the main causes of cancer. Therefore, finding easy ways to manipulate and correct DNA changes has been the biggest medical concern in cancer treatment. Researchers have introduced CRISPR/Cas9 as the newest technology for gene editing that precisely and easily changes the genome of any cell. In our study, histone deacetylase-2 was disrupted in gastric cancer cells using CRISPR technology. This modification reduced growth kinetics and invasion of cancer cells. On the other hand, cell death (also called apoptosis) was induced. Sensitization of the cancer cells to chemotherapeutic agents is noticeable in this research. This study needs to uncover more signaling pathways in vitro and in vivo.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Cell Line, Tumor , Apoptosis , Cell Proliferation , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Epigenesis, Genetic , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism
5.
Int J Biol Macromol ; 253(Pt 4): 127060, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37774811

ABSTRACT

The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.


Subject(s)
MicroRNAs , Nanoparticles , Neoplasms , Animals , Mice , Drug Carriers/therapeutic use , Silicon Dioxide , Drug Delivery Systems , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Nanoparticles/therapeutic use , Porosity , Neoplasms/drug therapy , Neoplasms/genetics , Genes, Neoplasm
6.
AMB Express ; 13(1): 31, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36905472

ABSTRACT

Developing adjuvant vaccines to combat rising multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infections is a promising and cost-effective approach. The aim of this analysis was to construct a pDNA-CPG C274-adjuvant nano-vaccine and investigate its immunogenicity and protection in BALB/c mice. The CPG ODN C274 adjuvant was chemically synthesized and cloned into pcDNA3.1( +), and the cloning was verified using PCR and BamHI/EcoRV restriction enzyme digestion. Then, utilizing a complex coacervation approach, pDNA-CPG C274 was encapsulated by chitosan (CS) nanoparticles (NPs). TEM and DLS are used to explore the properties of the pDNA/CSNP complex. TLR-9 pathway activation was investigated in human HEK-293 and RAW 264.7 mouse cells. The vaccine's immunogenicity and immune-protective effectiveness were investigated in BALB/c mice. The pDNA-CPG C274/CSNPs were small (mean size 79.21 ± 0.23 nm), positively charged (+ 38.87 mV), and appeared to be spherical. A continuous slow release pattern was achieved. TLR-9 activation was greatest in the mouse model with CpG ODN (C274) at concentrations of 5 and 10 µg/ml with 56% and 55%, respectively (**P < 0.01). However, in HEK-293 human cells, by increasing the concentration of CpG ODN (C274) from 1 to 50 µg/ml, the activation rate of TLR-9 also increased, so that the highest activation rate (81%) was obtained at the concentration of 50 µg/ml (***P < 0.001). pDNA-CPG C274/CSNPs immunized BALB/c mice produced increased amounts of total-IgG, as well as IFN-γ and IL-1B in serum samples, compared to non-encapsulated pDNA-CPG C274. Furthermore, liver and lung injuries, as well as bacterial loads in the liver, lung, and blood, were reduced, and BALB/c mice immunized with pDNA-CPG C274/CSNPs showed potent protection (50-75%) against acute fatal Intraperitoneal A. baumannii challenge. pDNA-CPG C274/CSNPs evoked total-IgG antibodies, Th1 cellular immunity, and the TLR-9 pathway, as well as protection against an acute fatal A. baumannii challenge. Our findings suggest that this nano-vaccine is a promising approach for avoiding A. baumannii infection when used as a powerful adjuvant.

7.
Iran J Biotechnol ; 20(3): e3110, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36381280

ABSTRACT

Background: Chitosan nanoparticles (CSNP) are becoming a popular alternative for delivering nucleic acids to tissues for gene transfer (gene therapy). The size and morphology of these biodegradable nano-carriers are adjustable, and their positive charge allows them to interact strongly with negatively charged nucleic acids. Objective: This study aimed to fabricate and characterize pcDNA3.1 (+) plasmid (pDNA) and CSNP complexes and determine the plasmid location in these vehicles. Materials and Methods: The characteristics of the pDNA/CSNP complex after production were investigated by SEM, XRD, DLS, TGA, and FTIR. The capacity of CSNP to form complexes with pDNA was investigated by labeling free plasmids with the fluorescent intercalating dye OliGreen. The stability of pDNA/CSNP in the presence of chitosanase was evaluated. Surface-Enhanced Raman Spectroscopy (SERS) for pDNA localization was performed, and absorption rate in BALB/c mice was assessed by real-time PCR. Results: The optimum pDNA/CSNP ratio for plasmid complex formation was established to be 1:2 (w.w) by measuring spectroscopy. At these optimum complex formation ratios, spectroscopy, and gel digest experiments, SERS indicated that a part of the pDNA was present on the complex outer surface. The findings of plasmid absorption in mouse thigh tissue by real-time PCR revealed that the rate of gene uptake was significantly greater at a dose of 1:2 (w.w) of pDNA/CSNP than in other groups (P< 0.001). Conclusions: The findings of this study reveal exactly pDNA fits into polymer nanostructured delivery systems, allowing the formulation to be adjusted for selective distribution. This understanding will aid future research into the system's functioning in vitro and in vivo.

8.
Int J Biol Macromol ; 223(Pt A): 732-754, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36372102

ABSTRACT

Gastrointestinal cancer (GI) is one of the most serious and health-threatening diseases worldwide. Many countries have encountered an escalating prevalence of shock. Therefore, there is a pressing need to clarify the molecular pathogenesis of these cancers. The use of high-throughput technologies that allow the precise and simultaneous investigation of thousands of genes, proteins, and metabolites is a critical step in disease diagnosis and cure. Recent innovations have provided easy and reliable methods for genome investigation, including TALENs, ZFNs, and the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats system). Among these, CRISPR/Cas9 has been revolutionary tool in genetic research. Recent years were prosperous years for CRISPR by the discovery of novel Cas enzymes, the Nobel Prize, and the development of critical clinical trials. This technology utilizes comprehensive information on genes associated with tumor development, provides high-throughput libraries for tumor therapy by developing screening platforms, and generates rapid tools for cancer therapy. This review discusses the various applications of CRISPR/Cas9 in genome editing, with a particular focus on genome manipulation, including infection-related genes, RNAi targets, pooled library screening for identification of unknown driver mutations, and molecular targets for gastrointestinal cancer modeling. Finally, it provides an overview of CRISPR/Cas9 clinical trials, as well as the challenges associated with its use.


Subject(s)
CRISPR-Cas Systems , Gastrointestinal Neoplasms , Humans , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Engineering/methods , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/therapy
9.
Int J Biol Macromol ; 219: 1319-1336, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36055598

ABSTRACT

Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.


Subject(s)
Nanoparticles , Strontium , Animals , Apatites , Asbestos, Amphibole , Bone Regeneration , Calcium , Humans , Hydroxyapatites , Lactic Acid , Nanoparticles/chemistry , Polyesters/chemistry , Porosity , Printing, Three-Dimensional , Rats , Strontium/chemistry , Strontium/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry
10.
Appl Biochem Biotechnol ; 194(10): 4892-4914, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35670904

ABSTRACT

Multidrug-resistant Acinetobacter baumannii (A. baumannii) infections are becoming more prevalent all over the world. As a cost-effective and preventative method, vaccination seems to be required against this bacterium. In the present study, subtractive proteomics along with reverse vaccinology approaches was used to predict suitable therapeutics against A. baumannii. Using the Vaxign online tool, we studied over 35 genomes of A. baumannii strains and chose outer membrane and secreted proteins of A. baumannii 1656-2 as possible vaccine candidates. Then, investigations were performed on the immunogenicity, antigenic characteristics, physicochemical properties, B-cell and MHC class I, and MHC class II molecules epitope densities of proteins. After optimizing the codon of the proteins, the pcDNA3.1( +) expression construct was designed and the immunogenicity, allergenicity, and physicochemical properties of the vaccine construct were predicted. Hcp and OmpC proteins were predicted as extracellular and outer membrane proteins, respectively. These proteins interact with 10 other proteins to form a network of protein interactions with virulence properties. Immunoassays of Hcp and OmpC proteins showed antigenicity of 0.88 and 0.79, respectively. These proteins have 5 structural cell epitope points and 5 linear B epitope points. They are also able to bind to different HLA alleles of MCH class I/class II as selected immunogenic proteins and designed non-allergenic structures with solubility of 0.650 and immunogenicity score of 0.91. The results of this "in silico" study indicate high specificity and the development of a significant humoral and cellular immune response. It can be concluded that the Hcp and OmpC dual vaccine construct is one of the promising candidates against A. baumannii. The findings of this "in silico" study show excellent specificity and the emergence of a substantial humoral and cellular immune response. This is a computer-based study that needs to be tested in vitro and in vivo to corroborate the conclusions of the vaccine design procedures.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/microbiology , Acinetobacter Infections/prevention & control , Acinetobacter baumannii/genetics , Bacterial Vaccines/genetics , Computational Biology/methods , Epitopes , Histocompatibility Antigens Class II , Humans , Membrane Proteins/metabolism , Vaccinology/methods
11.
Toxicol Appl Pharmacol ; 441: 115989, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35314202

ABSTRACT

Due to recent advances in the field of small molecule-based drugs, designing an efficient siRNA delivery system seems essential. Here, modified sets of lipids conjugated with cell-penetrating TAT peptide, MMP2 enzyme-sensitive moiety, and cetuximab antibodies against the EGF receptor were synthesized, purified and verified on HPLC, TLC, SEM, and DLS analyses. Different cellular and molecular experiments were designed to evaluate the transfection efficiency, targeting properties, and functions, including cytotoxicity assay, resensitization assessments, flow cytometry-based uptake assay, BCRP silencing efficiency, real-time PCR, and western blotting. The final targeted liposomes represented an average diameter of 160 nm; zeta-potential and siRNA encapsulation rates were respectively around -28.9 ± 3.16 mV and 88.3 ± 0.9 w/w. The siBCRP carried by the TAT+Cetuximab+ liposome led to an increase in the tumoricidal effect of mitoxantrone by a reduction in IC50 value by 4-fold (*** P < 0.001). Flow cytometry results showed that the cellular uptake rate of final immunoliposomes was significantly higher than the naked liposomes (*** P < 0.001). The Targeted siRNA encapsulating liposomes decreased BCRP transcript and protein levels in MCF7-MX cells by 0.24 and 0.2-fold after 48 h, respectively. Due to the silencing results of the BCRP by the encapsulated siRNA and the inhibitory effects of cetuximab on the EGFR, this formulation could widely be utilized as a carrier for tumor-directed gene delivery.


Subject(s)
Breast Neoplasms , Nanoparticles , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cetuximab/pharmacology , Drug Resistance, Multiple , Female , Humans , Liposomes , Nanoparticles/chemistry , Neoplasm Proteins , RNA, Small Interfering/genetics
12.
Front Pharmacol ; 13: 797804, 2022.
Article in English | MEDLINE | ID: mdl-35281900

ABSTRACT

Cancer is the main cause of morbidity and mortality worldwide, excluding infectious disease. Because of their lack of specificity in chemotherapy agents are used for cancer treatment, these agents have severe systemic side effects, and gradually lose their therapeutic effects because most cancers become multidrug resistant. Platinum nanoparticles (PtNPs) are relatively new agents that are being tested in cancer therapy. This review covers the various methods for the preparation and physicochemical characterization of PtNPs. PtNPs have been shown to possess some intrinsic anticancer activity, probably due to their antioxidant action, which slows tumor growth. Targeting ligands can be attached to functionalized metal PtNPs to improve their tumor targeting ability. PtNPs-based therapeutic systems can enable the controlled release of drugs, to improve the efficiency and reduce the side effects of cancer therapy. Pt-based materials play a key role in clinical research. Thus, the diagnostic and medical industries are exploring the possibility of using PtNPs as a next-generation anticancer therapeutic agent. Although, biologically prepared nanomaterials exhibit high efficacy with low concentrations, several factors still need to be considered for clinical use of PtNPs such as the source of raw materials, stability, solubility, the method of production, biodistribution, accumulation, controlled release, cell-specific targeting, and toxicological issues to human beings. The development of PtNPs as an anticancer agent is one of the most valuable approaches for cancer treatment. The future of PtNPs in biomedical applications holds great promise, especially in the area of disease diagnosis, early detection, cellular and deep tissue imaging, drug/gene delivery, as well as multifunctional therapeutics.

13.
Cell Biol Int ; 46(2): 255-264, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34816536

ABSTRACT

Although the elevated level of the α-N-acetylgalactosaminidase enzyme (encoded by the NAGA gene) is a well-recognized feature of cancer cells; little research works have been undertaken on the cancer malignancy mechanisms. The effects of NAGA gene downregulation on cancer cells' features such as drug resistance, impaired programmed cell death, and migration were analyzed in this study. The cells grew exponentially with a doubling time of 30 h in an optimal condition. Toxicity of daunorubicin chemotherapy drug on NAGA-transfected EPG85.257RDB cells was evaluated in comparison to control cells and no significant change was recorded. Quantitative transcript analyses and protein levels revealed that the MDR1 pump almost remained unchanged during the study. Moreover, the NAGA gene downregulation enhanced the late apoptosis rate in EPG85.257RDB cells at 24 h posttransfection. The investigated expression level of genes and proteins involved in the TNFR2 signaling pathway, related to cancer cell apoptosis, showed considerable alterations after NAGA silencing as well. MAP3K14 and CASP3 genes were downregulated while IL6, RELA, and TRAF2 experienced an upregulation. Also, NAGA silencing generally diminished the migration ability of EPG85.257RDB cells and the MMP1 gene (as a critical gene in metastasis) expression decreased significantly. The expression of the p-FAK protein, which is located in the downstream of the α2 ß1 integrin signaling pathway, was reduced likewise. It could be concluded that despite drug resistance, NAGA silencing resulted in augmentative and regressive effects on cell death and migration.


Subject(s)
Stomach Neoplasms , Apoptosis , Cell Death , Cell Line, Tumor , Drug Resistance, Multiple , Humans , Stomach Neoplasms/metabolism , alpha-N-Acetylgalactosaminidase/genetics , alpha-N-Acetylgalactosaminidase/metabolism , alpha-N-Acetylgalactosaminidase/therapeutic use
14.
Infect Genet Evol ; 96: 105138, 2021 12.
Article in English | MEDLINE | ID: mdl-34793968

ABSTRACT

In the last decade, Multi-drug resistance (MDR)-associated infections of Acinetobacter baumannii have grown worldwide. A cost-effective preventative strategy against this bacterium is vaccination. This study has presented five novel vaccine candidates against A. baumannii produced using the reverse vaccinology method. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. The initial screening and antigenicity evaluation were performed using Vaxign. The ccSOL omics was also employed to predict protein solubility. The cross-membrane localization of the protein was predicted using PRED-TMBB. B cell epitope prediction was made for immunogenicity using the IEDB and BepiPred-2.0 database. Eventually, BLASTp was done to verify the extent of similarity to the human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. In silico, potential vaccines against 21 A. baumannii strains were identified using reverse vaccinology and subtractive genomic techniques. Based on the above criteria, out of the initial 15 A. baumannii proteins selected for screening, nine exposed/secreted/membrane proteins, i.e., Pfsr, LptE, OmpH, CarO, CsuB, CdiB, MlaA, FhuE, and were the most promising candidates. Their solubility and antigenicity were also examined and found to be more than 0.45 and 0.6, respectively. Based on the results, LptE was selected with the highest average antigenic score of 1.043 as the best protein, followed by FimF and Pfsr with scores of 1.022 and 1.014, respectively. In the end, five proteins were verified as promising candidates. Overall, the targets identified herein may be utilized in future strategies to control A. baumannii worldwide.


Subject(s)
Acinetobacter Infections/prevention & control , Acinetobacter baumannii/immunology , Bacterial Vaccines/immunology , Genomics , Humans , Serogroup , Vaccinology
15.
Sci Rep ; 11(1): 20531, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654836

ABSTRACT

Although siRNA is a promising technology for cancer gene therapy, effective cytoplasmic delivery has remained a significant challenge. In this paper, a potent siRNA transfer system with active targeting moieties toward cancer cells and a high loading capacity is introduced to inhibit drug resistance. Mesoporous silica nanoparticles are of great potential for developing targeted gene delivery. Amino-modified MSNs (NH2-MSNs) were synthesized using a modified sol-gel method and characterized by FTIR, BET, TEM, SEM, X-ray diffraction, DLS, and 1H-NMR. MDR1-siRNA was loaded within NH2-MSNs, and the resulting negative surface was capped by functionalized chitosan as a protective layer. Targeting moieties such as TAT and folate were anchored to chitosan via PEG-spacers. The loading capacity of siRNA and the protective effect of chitosan for siRNA were determined by gel retardation assay. MTT assay, flow cytometry, real-time PCR, and western blot were performed to study the cytotoxicity, cellular uptake assay, targeting evaluation, and MDR1 knockdown efficiency. The synthesized NH2-MSNs had a particle size of ≈ 100 nm and pore size of ≈ 5 nm. siRNA was loaded into NH2-MSNs with a high loading capacity of 20% w/w. Chitosan coating on the surface of siRNA-NH2-MSNs significantly improved the siRNA protection against enzyme activity compared to naked siRNA-NH2-MSNs. MSNs and modified MSNs did not exhibit significant cytotoxicity at therapeutic concentrations in the EPG85.257-RDB and HeLa-RDB lines. The folate-conjugated nanoparticles showed a cellular uptake of around two times higher in folate receptor-rich HeLa-RDB than EPG85.257-RDB cells. The chitosan-coated siRNA-NH2-MSNs produced decreased MDR1 transcript and protein levels in HeLa-RDB by 0.20 and 0.48-fold, respectively. The results demonstrated that functionalized chitosan-coated siRNA-MSNs could be a promising carrier for targeted cancer therapy. Folate-targeted nanoparticles were specifically harvested by folate receptor-rich HeLa-RDB and produced a chemosensitized phenotype of the multidrug-resistant cancer cells.


Subject(s)
Carcinoma/therapy , Drug Resistance, Neoplasm , Genetic Therapy/methods , RNA, Small Interfering/administration & dosage , ATP Binding Cassette Transporter, Subfamily B/genetics , Chitosan/chemistry , Folic Acid/chemistry , HeLa Cells , Humans , Nanoparticles/chemistry , Silicon Dioxide
16.
Mol Biol Rep ; 48(11): 7105-7111, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34564803

ABSTRACT

BACKGROUND: Flavonoids have been demonstrated to have the ability of sensitizing cancer cells to chemotherapy and inverse multidrug resistance via various mechanisms, such as modulating of pumps. The therapeutic effect of candidone, tephrosin, and bavachinin in treatment of cancer, particularly to overcome multidrug resistance (MDR) is largely unknown. The capacity of these agents in sensitization of MDR cells is investigated in the current work. METHODS AND RESULTS: We analyzed the impact of candidone, tephrosin, and bavachinin, as chemosensitizer on cell cytotoxicity, P-gp and ABCG2 mRNA expression level on two multidrug resistant cells, ABCG2 overexpressing human epithelial breast cancer cell line (MCF7/MX), and P-gp overexpressing human gastric adenocarcinoma cell line (EPG85.257RDB). The inhibitory concentration of 50% (IC50) of daunorubicin in EPG85.257RDB cells in combination with IC10 of Bavachinin, Tephrosin, and Candidone were 6159 ± 948, 4186 ± 665, 730 ± 258 nM, and this data in MCF7/MX cell were 1773 ± 534, 7160 ± 405 and 3340 ± 622 nM respectively. These three flavonoids dose-dependently decreased the viability of MCF7/MX and EPG85.257RDB and significantly (p < 0.05) decreased IC50 of daunorubicin and mitoxantrone except Tephrosin in MCF7/MX cells. Candidone and Bavachinin were the most potent chemosensitizer in EPG85.257RDB and MCF7/MX cells respectively. Flavonoids did not reduce mRNA expression of P-gp and ABCG2 after 72 h treatment, except Candidone in EPG85.257RDB and Bavachinin in MCF7/MX cells. CONCLUSIONS: This effect is not time-dependent, and flavonoids have their own patterns that are cell-dependent. In general, tephrosin, candidone, and bavachinin had the potential of sensitizing MDR cells to mitoxantrone and daunorubicin.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms , Cytotoxins/pharmacology , Neoplasm Proteins , Stomach Neoplasms , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Daunorubicin/pharmacology , Female , Flavonoids/pharmacology , Humans , MCF-7 Cells , Mitoxantrone/pharmacology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Rotenone/analogs & derivatives , Rotenone/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
17.
Cartilage ; 13(2_suppl): 1583S-1601S, 2021 12.
Article in English | MEDLINE | ID: mdl-34340598

ABSTRACT

OBJECTIVE: Meniscus injuries in the inner avascular zone have weak intrinsic self-healing capacity and often progress to osteoarthritis. This study focused on evaluating the effects of polycaprolactone/silk fibroin/gelatin/ascorbic acid (PCL/SF/Gel/AA) composite scaffolds seeded with adipose-derived mesenchymal stem cells (ASCs), in the meniscus repair. DESIGN: To this end, composite scaffolds were cross-linked using N-hydroxysuccinimide and 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride. Scaffolds were then characterized by scanning electron microscope, mechanical tests, total antioxidant capacity, swelling, and toxicity tests. RESULTS: The PCL/SF/Gel/AA scaffolds exhibited suitable mechanical properties. Furthermore, vitamin C rendered them the highest antioxidant capacity. The PCL/SF/Gel/AA scaffolds also showed good biocompatibility and proliferation for chondrocytes. Moreover, the PCL/SF/Gel/AA scaffold seeded with allogeneic ASCs was engrafted in New Zealand rabbits who underwent unilateral punch defect in the medial meniscus of the right knee. After 2 months postimplantation, macroscopic and histologic studies for new meniscus cartilage were performed. CONCLUSIONS: Our results indicated that the PCL/SF/Gel/AA composite scaffolds seeded with allogeneic ASCs could successfully improve meniscus healing in damaged rabbits.


Subject(s)
Fibroins , Meniscus , Animals , Ascorbic Acid , Fibroins/pharmacology , Gelatin , Polyesters , Rabbits , Tissue Engineering/methods , Tissue Scaffolds
18.
Mol Biol Rep ; 48(8): 5965-5975, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34331180

ABSTRACT

BACKGROUND: Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and anticancer effects. Recent analysis revealed that prodigiosin hypersensitizes Serratia marcescens to gamma radiation. In the present study, we report the cytotoxicity and genotoxicity properties of undecylprodigiosin and butylcycloheptylprodigiosin in the presence and absence of radiation through the MTT and alkaline comet experiments. METHODS AND RESULTS: Findings demonstrated that undecylprodigiosin was at least a fivefold more cytotoxic at low radiation doses (1 and 3 Gy) on both MCF7 and HDF lines rather than in the absence or high radiation doses (5 Gy) (P value < 0.05). Although butylcycloheptylprodigiosin toxicity on MCF7 and HDF was dose-dependent, it was not influenced by any radiation doses (P value > 0.05). Comet findings confirmed that these compounds' genotoxicity is only dose-dependent. Radiation had no significant effects on DNA damage on any of the cells (P value > 0.05). CONCLUSIONS: In general, it can be concluded that the prodiginines are cytotoxic agents that act as a double-edged sword, radiosensitizers and radio-protective, respectively at low and high radiation doses in cancer treatment process. As the results they could be used in antitumor therapies very soon.


Subject(s)
Neoplasms/therapy , Prodigiosin/analogs & derivatives , Anti-Infective Agents , Antineoplastic Agents , Cell Line , DNA Damage , Humans , Immunosuppressive Agents , MCF-7 Cells , Photosensitizing Agents/pharmacology , Prodigiosin/metabolism , Prodigiosin/pharmacology
19.
Iran J Immunol ; 18(2): 95-102, 2021 06.
Article in English | MEDLINE | ID: mdl-34190690

ABSTRACT

BACKGROUND: The immune evasion of dysplastic cells plays an important role in suppressing the immune response and progression of malignancy. The role of the complement inhibitors in the development of oral epithelial dysplastic lesions and squamous cell carcinoma (SCC) is still unclear. OBJECTIVE: This study aimed to assess the expression of C4 binding protein (C4BP) as a complement inhibitor in oral squamous cell carcinoma and leukoplakia. METHODS: In this study, 94 samples were classified into four groups: leukoplakia with mild to moderate dysplasia, leukoplakia with severe dysplasia or carcinoma in situ, early invasive SCC, and invasive SCC. The expression of C4BP marker was evaluated by immunohistochemistry (IHC) and real-time PCR. The results were analyzed by the Kruskal-Wallis, Bonferroni adjusted Dunn's multiple comparison, and one-way ANOVA tests. RESULTS: The results of IHC revealed the expression patterns of C4BP in oral dysplasia and SCC, and indicated that the C4BP expression was not significantly different between different histopathological grades in epithelial cells and vessels (P=0.157 and P=0.123, respectively) but, it was significantly different in fibroblasts and lymphocytes (P=0.017 and P=0.043, respectively). The real-time PCR showed a significant correlation between the dysplasia grade and expression of C4BP (P<0.05). CONCLUSION: According to the results, C4BP is expressed in the cancerous tissue by the tumor cells and their surrounding stroma. In addition, upregulation of the C4BP gene as an inhibitor of the complement system is a possible strategy adopted by the tumor cells to evade the immune system.


Subject(s)
Complement C4b-Binding Protein/physiology , Leukoplakia, Oral/immunology , Mouth Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Adult , Aged , Aged, 80 and over , Complement C4b-Binding Protein/analysis , Complement C4b-Binding Protein/genetics , Female , Humans , Immunohistochemistry , Leukoplakia, Oral/pathology , Male , Middle Aged , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/pathology
20.
Int J Biol Macromol ; 183: 1327-1345, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33932422

ABSTRACT

Meniscus cartilage has poor self-healing capacity in the inner zone and its damage leads to articular cartilage degeneration. Here we have developed hybrid constructs using polycaprolactone (PCL) and polyurethane (PU) surface modified by gelatin (G), chitosan (C), and hyaluronic acid (H) biomacromolecules and piroxicam-loaded gelatin nanofibers (PCL/PU/GCH/P). The surface of constructs was crosslinked using EDC and NHS. The scaffolds were investigated by SEM, FTIR spectroscopy, swelling test, degradation rate, mechanical tests, and in vitro piroxicam release assay. Furthermore, the cell-seeded scaffolds were evaluated by SEM, viability assay, dapi staining, cell migration, proliferation, and gene expression of chondrocytes within these scaffolds. Finally, the animal study was performed in a rabbit model. Chondrocyte and rabbit adipose-derived mesenchymal stem cells (ASCs) from the infrapatellar fat pad (Hoffa's fat pad) were used. Swelling and degradation rate were increased in the modified scaffolds. Tensile and compressive Young's modulus also were near to human native meniscus tissue. The highest expression level of chondrocyte marker genes was observed for the PCL/PU/GCH scaffold. A significant regeneration was obtained in rabbits treated with ASCs-loaded PCL/PU/GCH/P scaffold after 3 months. The surface-modified scaffolds with or without ASCs could successfully accelerate meniscus regeneration and exhibit potential application in meniscus tissue engineering.


Subject(s)
Gelatin/chemistry , Piroxicam/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cartilage, Articular/surgery , Meniscus/surgery , Nanofibers/chemistry , Polyesters/chemistry , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...