Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Neuroanat ; 125: 102148, 2022 11.
Article in English | MEDLINE | ID: mdl-36031087

ABSTRACT

BACKGROUND: Lovastatin, as a drug of statins subgroup, has been conceptualized to have anti-inflammatory, antioxidant, and anti-apoptotic properties. Accordingly, the present study aimed to investigate the neuroprotective ramification of lovastatin on spinal cord injury (SCI). MATERIAL AND METHODS: Seventy-five female adult Wistar rats were divided into five groups (n = 15). In addition to non-treated (Control group) and laminectomy alone (Sham group), SCI animals were randomly assigned to non-treated spinal cord injury (SCI group), treated with 2 mg/kg of lovastatin (Lova 2 group), and treated with 5 mg/kg of lovastatin (Lova 5 group). At the end of the study, to evaluate the treatments, MDA, CAT, SOD, and GSH factors were evaluated biochemically, apoptosis and gliosis were assessed by immunohistochemical while measuring caspase-3 and GFAP antibodies, and inflammation was estimated by examining the expression of IL-10, TNF-α, and IL-1ß genes. The stereological method was used to appraise the total volume of the spinal cord at the site of injury, the volume of the central cavity created, and the density of neurons and glial cells in the traumatic area. In addition, Basso-Beattie-Bresnehan (BBB) and narrow beam test (NBT) were utilized to rate neurological functions. RESULTS: Our results exposed the fact that biochemical factors (except MDA), stereological parameters, and neurological functions were significantly ameliorated in both lovastatin-treated groups, especially in Lova 5 ones, compared to the SCI group. The expression of the IL-10 gene was significantly upregulated in both lovastatin-treated groups compared to the SCI group and was considerably heighten in Lova 5 group. Expression of TNF-α and IL-1ß, as well as the rate of apoptosis and GFAP positive cells significantly decreased in both lovastatin treated groups compared to the SCI group, and it was more pronounced in the Lova 5 ones. CONCLUSION: Overall, using lovastatin, especially at a dose of 5 mg/kg, has a dramatic neuroprotective impact on SCI treatment.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Female , Rats , Apoptosis , Disease Models, Animal , Interleukin-10/metabolism , Lovastatin/pharmacology , Lovastatin/therapeutic use , Lovastatin/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Wistar , Spinal Cord/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
J Chem Neuroanat ; 104: 101750, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31954768

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is known as one of the chronic inflammatory diseases characterized by lesions in the central nervous system (CNS) and peripheral nervous system(PNS) resulting in serious cognitive or physical disabilities as well as neurological disorders. Thus, protective effects of erythropoietin(EPO) on myelinization of oligodendrocytes and schwann cells respectively in CNS and PNS following MS induced by cuprizone (CPZ) administration in young female mice. METHODOLOGY: To meet the objectives of this study; a chow with 0.2 % CPZ was used to feed young female C57BL/6 J mice for six weeks. After three weeks, EPO (5000 IU/kg body weight) was administered via daily intra-peritoneal injection for simultaneous treatment of the mice. Measurement of latency and amplitude of the compound muscle action potential (CMAP) of gastrocnemius muscle was also performed every week during a six-week demyelination interval, and then examinations were fulfilled on the histological sections of the brain and sciatic nerve. Therefore, we focused on the removal of the sciatic and sciatic nerve specimens and analysis of the use of the stereological procedures, western blot, immuno-histochemistry, and gene expression. RESULTS: According to the results of this study, MBP levels increased in oligodendrocytes (OLs) in the treated mice. Moreover, EPO could concurrently enhance motor coordination and muscle activity. Analysis showed the significant enhancement of the gene expression of MBP, MAG, and S100, as well as stereological variables in the treatment group in comparison with the cuprizone (CPZ) group. CONCLUSION: Findings could help further understand the alleviation of the detrimental impacts of CPZ using the OLs that would be capable of increasing the level of S100, MAG, and MBP.

SELECTION OF CITATIONS
SEARCH DETAIL
...