Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 27(9): 1281-1291, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30242595

ABSTRACT

Soil pollution occurring at mining sites has adverse impacts on soil microbial diversity. New approaches, such as metagenomics approach, have become a powerful tool to investigate biodiversity of soil microbial communities. In the current study, metagenomics approach was used to investigate the microbial diversity of soils contaminated with different concentrations of lead (Pb) and zinc (Zn). The contaminated soils were collected from a Pb and Zn mine. The soil total DNA was extracted and 16S rDNA genes were amplified using universal primers. The PCR amplicons were sequenced and bioinformatic analysis of metagenomes was conducted to identify prokaryotic diversity in the Pb- and Zn-contaminated soils. The results indicated that the ten most abundant bacteria in all samples were Solirubrobacter (Actinobacteria), Geobacter (Proteobacteria), Edaphobacter (Acidobacteria), Pseudomonas (Proteobacteria), Gemmatiomonas (Gemmatimonadetes), Nitrosomonas, Xanthobacter, and Sphingomonas (Proteobacteria), Pedobacter (Bacterioidetes), and Ktedonobacter (Chloroflexi), descendingly. Archaea were also numerous, and Nitrososphaerales which are important in the nitrogen cycle had the highest abundance in the samples. Although, alpha and beta diversity showed negative effects of Pb and Zn contamination on soil microbial communities, microbial diversity of the contaminated soils was not subjected to a significant change. This study provided valuable insights into microbial composition in heavy metals-contaminated soils.


Subject(s)
Environmental Monitoring/methods , Metagenomics , Metals, Heavy/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Metagenome , Soil
2.
Bull Entomol Res ; 107(6): 777-790, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28482938

ABSTRACT

Helicoverpa armigera is a significant agricultural pest and particularly notorious for its resistance to many types of common insecticides. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing and trigged by double-strand RNA (dsRNA), has become a widely used reverse genetics and potent tool for insect pest control. In this study, the effect of ingestion and injection delivery methods of dsRNA related two important enzyme genes, α-amylase (HaAMY48, Ha-AMY49) and juvenile hormone esterase (Ha-JHE), were examined on growth and development of H. armigera. After 24, 48, 72 and 96 h of feeding bioassay, significant down regulation was observed about; 56, 68, 78, 80.75% for HaAMY48, 60, 70, 86.5 and 96.75%, for Ha-AMY49 and 14, 27.5, 23 and 31.7% for Ha-JHE, respectively. The results for injection assay was 61.5, 71.5, 74 and 95.8% for Ha-AMY48; 70, 88, 91.5 and 97.7% for Ha-AMY49 and 22, 61, 75 and 74% for Ha-JHE after 24, 48 and 72 h of last injecting, respectively. Larvae that treated with dsRNA, fed or injected, lost more than half of their weight. 50% mortality in treated larvae was observed in the case injection bioassay with dsHa-JHE and 59% of larvae that fed of dsRNA-treated cubes survived. DsHa-AMY48 and 49 have significant mortality, but mixing of them is more effective in both bioassays. Injection bioassay has a potent inhibitory effect on α-amylase-specific activity about more than 87% in treated larvae with mix of dsHa-AMY48 and 49. Adult malformation percent was evaluated for feeding (28, 35.5 and 43% for Ha-AMY48, 49 and Ha-JHE, respectively) and injection bioassay (23, 42 and 29% for Ha-AMY48, 49 and Ha-JHE, respectively). All these finding suggest that Ha-AMY48, Ha-AMY49 and Ha-JHE can be new candidates to scheming effective dsRNAs pesticide for H. armigera control.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Insect Control/methods , Moths/genetics , RNA Interference , alpha-Amylases/genetics , Amino Acid Sequence , Animals , Digestion/genetics , Gastrointestinal Tract/enzymology , Moths/enzymology , Moths/growth & development , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...