Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 62(8): 1082-1088, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33277394

ABSTRACT

Radiohybrid prostate-specific membrane antigen (rhPSMA) ligands are a new class of prostate cancer theranostic agents. 18F-rhPSMA-7 offers the advantages of 18F labeling and low urinary excretion compared with 68Ga-PSMA-11. Here, we compare the frequency of non-tumor-related uptake and tumor positivity with 68Ga-PSMA-11 and 18F-rhPSMA-7 in patients with primary or recurrent prostate cancer. Methods: This retrospective matched-pair comparison matched 160 18F-rhPSMA-7 with 160 68Ga-PSMA-11 PET/CT studies for primary staging (n = 33) and biochemical recurrence (n = 127) according to clinical characteristics. Two nuclear medicine physicians reviewed all scans, first identifying all PET-positive lesions and then differentiating lesions suggestive of prostate cancer from those that were benign, on the basis of known pitfalls and ancillary information from CT. For each region, the SUVmax of the lesion with the highest PSMA ligand uptake was noted. Tumor positivity rates were determined, and SUVmax was compared separately for each tracer. Results:18F-rhPSMA-7 and 68Ga-PSMA-11 PET revealed 566 and 289 PSMA ligand-positive lesions, respectively. Of these, 379 and 100 lesions, equaling 67.0% and 34.6%, respectively, of all PSMA-positive lesions, were considered benign. The distribution of their etiology was similar (42%, 24%, and 25% with 18F-rhPSMA-7 vs. 32%, 24%, and 38% with 68Ga-PSMA-11 for ganglia, bone, and unspecific lymph nodes, respectively). All primary tumors were positive with both agents (n = 33 each), whereas slightly more metastatic lesions were observed with 68Ga-PSMA-11 in both disease stages (113 for 18F-rhPSMA-7 and 124 for 68Ga-PSMA-11). The SUVmax of 18F-rhPSMA-7 and 68Ga-PSMA-11 did not differ (P > 0.05) in local recurrence or primary prostate cancer; however, the tumor-to-bladder ratio was significantly higher with 18F-rhPSMA-7 (4.9 ± 5.3 vs. 2.2 ± 3.7, P = 0.02, for local recurrence; 9.8 ± 9.7 vs. 2.3 ± 2.6, P < 0.001, for primary prostate cancer). Conclusion: The tumor positivity rate was consistently high for 68Ga-PSMA-11 and 18F-rhPSMA-7. Both tracers revealed a considerable number of areas of uptake that were reliably identified as benign by trained physicians making use of corresponding morphologic imaging and known PSMA pitfalls. These were more frequent with 18F-rhPSMA-7. However, the matched-pair comparison could have introduced a source of bias. Adequate reader training can allow physicians to differentiate benign uptake from disease and be able to benefit from the logistical and clinical advantages of 18F-rhPSMA-7.


Subject(s)
Prostatic Neoplasms , Aged , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Retrospective Studies
2.
PLoS One ; 10(8): e0135618, 2015.
Article in English | MEDLINE | ID: mdl-26317771

ABSTRACT

Conceptually, premature initiation of post-wound angiogenesis could interfere with hemostasis, as it relies on fibrinolysis. The mechanisms facilitating orchestration of these events remain poorly understood, however, likely due to limitations in discerning the individual contribution of cells and extracellular matrix. Here, we designed an in vitro Hemostatic-Components-Model (HCM) to investigate the role of the fibrin matrix as protein factor-carrier, independent of its cell-scaffold function. After characterizing the proteomic profile of HCM-harvested matrix releasates, we demonstrate that the key pro-/anti-angiogenic factors, VEGF and PF4, are differentially bound by the matrix. Changing matrix fibrin mass consequently alters the balance of releasate factor concentrations, with differential effects on basic endothelial cell (EC) behaviors. While increasing mass, and releasate VEGF levels, promoted EC chemotactic migration, it progressively inhibited tube formation, a response that was dependent on PF4. These results indicate that the clot's matrix component initially serves as biochemical anti-angiogenic barrier, suggesting that post-hemostatic angiogenesis follows fibrinolysis-mediated angiogenic disinhibition. Beyond their significance towards understanding the spatiotemporal regulation of wound healing, our findings could inform the study of other pathophysiological processes in which coagulation and angiogenesis are prominent features, such as cardiovascular and malignant disease.


Subject(s)
Fibrin/metabolism , Hemostasis , Neovascularization, Physiologic , Angiogenesis Inducing Agents/metabolism , Blood Coagulation , Cell Movement , Endothelial Cells/metabolism , Extracellular Matrix , Humans , Hypoxia/metabolism , Oxygen , Protein Binding , Signal Transduction , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...