Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 44(6): 916-40, 2005 Feb 20.
Article in English | MEDLINE | ID: mdl-15751683

ABSTRACT

We present a detailed study of the performance of the Astro-E x-ray telescope (XRT) onboard the Astro-E satellite. As described in preceding papers the ground-based calibrations of the Astro-E XRT revealed that its image quality and effective area are somewhat worse than that expected from the original design. Conceivable causes for such performance degradation are examined by x-ray and optical microscopic measurements at various levels, such as individual reflectors, sectors, and quadrants of the XRT and their alignments. We can attribute, based on detailed measurements, the degradation of the image quality to a slope error in the individual reflectors and the positioning error of reflectors. As for the deficit of the effective area, the shadowing of x rays within the XRT body is the dominant factor. Error budgets for the performance degradation of the Astro-E XRT are summarized. The ray-tracing simulator, which is needed to construct the response function for arbitrary off-axis angles and spatial distributions of any celestial x-ray sources, has been developed and tuned based on the results of detailed measurements. The ray-tracing simulation provides results that are consistent within 3% with the real measurement except for large off-axis angles and higher energies. We propose, based on knowledge obtained from all the measurements and simulations, several plans for future developments to improve the performance of the nested thin-foil mirrors.

2.
Appl Opt ; 42(10): 1856-66, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12683767

ABSTRACT

The International Focusing Optics Collaboration for microCrab Sensitivity (InFOCmicroS) balloonborne hard x-ray telescope incorporates graded Pt/C multilayers replicated onto segmented Al foils to obtain the significant effective area at energies previously inaccessible to x-ray optics. Reflectivity measurements of individual foils demonstrate our capability to produce a mass quantity of multilayered foils with a rms roughness of 0.5 nm. The effective area of the completed mirror is 78 and 22 cm2 at 20 and 40 keV, respectively. The measured half-power diameter is 2.0 +/- 0.6 are min (90% confidence). The successful completion of this mirror demonstrates its applicability to future x-ray telescopes such as Constellation-X.

3.
Appl Opt ; 41(25): 5417-26, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-12211573

ABSTRACT

A hard-x-ray telescope is successfully produced for balloon observations by making use of depth-graded multilayers, or so-called supermirrors, with platinum-carbon (Pt/C) layer pairs. It consists of four quadrant units assembled in an optical configuration with a diameter of 40 cm and a focal length of 8 m. Each quadrant is made of 510 pieces of coaxially and confocally aligned supermirrors that significantly enhance the sensitivity in an energy range of 20-40 keV. The configuration of the telescope is similar to the x-ray telescope onboard Astro-E, but with a longer focal length. The reflectivity of supermirrors is of the order of 40% in the energy range concerned at a grazing angle of 0.2 deg. The effective area of a fully assembled telescope is 50 cm2 at 30 keV. The angular resolution is 2.37 arc min at half-power diameter 8.0 keV. The field of view is 12.6 arc min in the hard-x-ray region, depending somewhat on x-ray energies. We discuss these characteristics, taking into account the figure errors of reflectors and their optical alignment in the telescope assembly. This hard-x-ray telescope is unanimously afforded in the International Focusing Optics Collaboration for muCrab Sensitivity balloon experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...