Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Exp Neurol ; 376: 114772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599366

ABSTRACT

Animals on Earth need to hold postures and execute a series of movements under gravity and atmospheric pressure. VAChT-Cre is a transgenic Cre driver mouse line that expresses Cre recombinase selectively in motor neurons of S-type (slow-twitch fatigue-resistant) and FR-type (fast-twitch fatigue-resistant). Sequential motor unit recruitment is a fundamental principle for fine and smooth locomotion; smaller-diameter motor neurons (S-type, FR-type) first contract low-intensity oxidative type I and type IIa muscle fibers, and thereafter larger-diameter motor neurons (FInt-type, FF-type) are recruited to contract high-intensity glycolytic type IIx and type IIb muscle fibers. To selectively eliminate S- and FR-type motor neurons, VAChT-Cre mice were crossbred with NSE-DTA mice in which the cytotoxic diphtheria toxin A fragment (DTA) was expressed in Cre-expressing neurons. The VAChT-Cre;NSE-DTA mice were born normally but progressively manifested various characteristics, including body weight loss, kyphosis, kinetic and postural tremor, and muscular atrophy. The progressive kinetic and postural tremor was remarkable from around 20 weeks of age and aggravated. Muscular atrophy was apparent in slow muscles, but not in fast muscles. The increase in motor unit number estimation was detected by electromyography, reflecting compensatory re-innervation by remaining FInt- and FF-type motor neurons to the orphaned slow muscle fibers. The muscle fibers gradually manifested fast/slow hybrid phenotypes, and the remaining FInt-and FF-type motor neurons gradually disappeared. These results suggest selective ablation of S- and FR-type motor neurons induces progressive muscle fiber-type transition, exhaustion of remaining FInt- and FF-type motor neurons, and late-onset kinetic and postural tremor in mice.


Subject(s)
Mice, Transgenic , Motor Neurons , Tremor , Animals , Motor Neurons/pathology , Motor Neurons/physiology , Mice , Tremor/genetics , Tremor/physiopathology , Muscle Fibers, Slow-Twitch/pathology , Muscle Fibers, Fast-Twitch/pathology , Muscular Diseases/physiopathology , Muscular Diseases/pathology , Muscular Diseases/etiology , Muscle Fatigue/physiology , Posture/physiology , Animals, Newborn , Disease Models, Animal
3.
Front Cell Neurosci ; 17: 1291673, 2023.
Article in English | MEDLINE | ID: mdl-38077951

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which non-cell-autonomous processes have been proposed as its cause. Non-neuronal cells that constitute the environment around motor neurons are known to mediate the pathogenesis of ALS. Perivascular macrophages (PVM) are immune cells that reside between the blood vessels of the central nervous system and the brain parenchyma; PVM are components of the neurovascular unit and regulate the integrity of the blood-spinal cord barrier (BSCB). However, it is not known whether regulation of BSCB function by PVM is involved in the pathogenesis of ALS. Here, we used SOD1G93A mice to investigate whether PVM is involved in the pathogenesis of ALS. Immunostaining revealed that the number of PVM was increased during the disease progression of ALS in the spinal cord. We also found that both anti-inflammatory Lyve1+ PVM and pro-inflammatory MHCII+ PVM subtypes were increased in SOD1G93A mice, and that subtype heterogeneity was shifted toward MHCII+ PVM compared to wild-type (WT) mice. Then we depleted PVM selectively and continuously in SOD1G93A mice by repeated injection of clodronate liposomes into the cerebrospinal fluid and assessed motor neuron number, neurological score, and survival. Results showed that PVM depletion prevented the loss of motoneurons, slowed disease progression, and prolonged survival. Further histological analysis showed that PVM depletion prevents BSCB collapse by ameliorating the reduction of extracellular matrix proteins necessary for the maintenance of barrier function. These results indicate that PVM are involved in the pathogenesis of ALS, as PVM degrades the extracellular matrix and reduces BSCB function, which may affect motor neuron loss and disease progression. Targeting PVM interventions may represent a novel ALS therapeutic strategy.

4.
Front Cell Neurosci ; 17: 1308972, 2023.
Article in English | MEDLINE | ID: mdl-38026700

ABSTRACT

Microglia are resident innate immune cells in the central nervous system (CNS) and play important roles in the development of CNS homeostasis. Excessive activation and neurotoxicity of microglia are observed in several CNS disorders, but the mechanisms regulating their activation remain unclear. Immune checkpoint molecules are expressed on activated immune cells and regulate their activation in peripheral immunity. However, the expression mechanism of immune checkpoint molecules in activated microglia is still unknown. Here, we analyzed the expression of immune checkpoint molecules in activated microglia using the mouse microglial cell line BV2 and primary cultured microglia. The expression of lymphocyte activation gene-3 (LAG-3), a type of immune checkpoint molecule, was increased in microglia activated by IFN-γ. IFN-γ-induced LAG-3 expression in microglia was suppressed by transfection of siRNA targeting STAT1. LAG-3 has two forms, membrane and soluble, and both forms were upregulated in microglia activated by IFN-γ. The production of soluble LAG-3 was suppressed by treatment with inhibitors of metalloproteinases such as ADAM10 and ADAM17. IFN-γ administration into cisterna magna of mice increased LAG-3 expression in spinal microglia. Furthermore, LAG-3 knockdown in microglia promoted nitric oxide production by IFN-γ. Our results demonstrate that LAG-3 expression in microglia is induced by the IFN-γ-STAT1 pathway and soluble LAG-3 production is regulated via cleavage of membranous LAG-3 by metalloproteinases including ADAM10 and ADAM17.

5.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569633

ABSTRACT

Immune cells such as T cells and macrophages express α7 nicotinic acetylcholine receptors (α7 nAChRs), which contribute to the regulation of immune and inflammatory responses. Earlier findings suggest α7 nAChR activation promotes the development of regulatory T cells (Tregs) in mice. Using human CD4+ T cells, we investigated the mRNA expression of the α7 subunit and the human-specific dupα7 nAChR subunit, which functions as a dominant-negative regulator of ion channel function, under resting conditions and T cell receptor (TCR)-activation. We then explored the effects of the selective α7 nAChR agonist GTS-21 on proliferation of TCR-activated T cells and Treg development. Varied levels of mRNA for both the α7 and dupα7 nAChR subunits were detected in resting human CD4+ T cells. mRNA expression of the α7 nAChR subunit was profoundly suppressed on days 4 and 7 of TCR-activation as compared to day 1, whereas mRNA expression of the dupα7 nAChR subunit remained nearly constant. GTS-21 did not alter CD4+ T cell proliferation but significantly promoted Treg development. These results suggest the potential ex vivo utility of GTS-21 for preparing Tregs for adoptive immunotherapy, even with high expression of the dupα7 subunit.

6.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203488

ABSTRACT

According to numerous studies, it has been epidemiologically suggested that habitual coffee intake seems to prevent the onset of neurodegenerative diseases. In this study, we hypothesized that coffee consumption suppresses neuroinflammation, which is closely related to the development of neurodegenerative diseases. Using microglial BV-2 cells, we first found that the inflammatory responses induced by lipopolysaccharide (LPS) stimulation was diminished by both coffee and decaffeinated coffee through the inhibition of an inflammation-related transcription factor, nuclear factor-κB (NF-κB). Pyrocatechol, a component of roasted coffee produced by the thermal decomposition of chlorogenic acid, also exhibited anti-inflammatory activity by inhibiting the LPS-induced activation of NF-κB. Finally, in an inflammation model using mice injected with LPS into the cerebrum, we observed that intake of pyrocatechol as well as coffee decoctions drastically suppressed the accumulation of microglia and the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNFα), CCL2, and CXCL1 in the inflammatory brain. These observations strongly encourage us to hypothesize that the anti-inflammatory activity of pyrocatechol as well as coffee decoction would be useful for the suppression of neurodegeneration and the prevention of the onsets of Alzheimer's (AD) and Perkinson's diseases (PD).


Subject(s)
NF-kappa B , Neurodegenerative Diseases , Animals , Mice , Neuroinflammatory Diseases , Coffee , Microglia , Lipopolysaccharides/toxicity , Inflammation/drug therapy , Catechols/pharmacology , Anti-Inflammatory Agents/pharmacology
8.
Biochem Biophys Res Commun ; 618: 61-66, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35716596

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive compound known to regulate various vascular functions. However, despite the fact that many vascular functions are regulated by peri-vascular cells such as pericytes, the effect of LPA on brain pericytes has not been fully evaluated. Thus, we designed this study to evaluate the effects of LPA on brain pericytes. These experiments revealed that while LPA receptors (LPARs) are expressed in cultured pericytes from mouse brains, LPA treatment does not influence the proliferation of these cells but does have a profound impact on their migration, which is regulated via the expression of LPAR1. LPAR1 expression was also detected in human pericyte culture and LPA treatment of these cells also induced migration. Taken together these findings imply that LPA-LPAR1 signaling is one of the key mechanisms modulating pericyte migration, which may help to control vascular function during development and repair processes.


Subject(s)
Lysophospholipids , Pericytes , Receptors, Lysophosphatidic Acid , Animals , Cell Movement , Lysophospholipids/pharmacology , Mice , Pericytes/drug effects , Pericytes/metabolism , Receptors, Lysophosphatidic Acid/metabolism
9.
Sci Rep ; 12(1): 1966, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121777

ABSTRACT

Trk-fused gene (TFG) mutations have been identified in patients with several neurodegenerative diseases. In this study, we attempted to clarify the effects of TFG deletions in motor neurons and in muscle fibers, using tissue-specific TFG knockout (vMNTFG KO and MUSTFG KO) mice. vMNTFG KO, generated by crossing TFG floxed with VAChT-Cre, showed deterioration of motor function and muscle atrophy especially in slow-twitch soleus muscle, in line with the predominant Cre expression in slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) motor neurons. Consistently, denervation of the neuromuscular junction (NMJ) was apparent in the soleus, but not in the extensor digitorum longus, muscle. Muscle TFG expressions were significantly downregulated in vMNTFG KO, presumably due to decreased muscle IGF-1 concentrations. However, interestingly, MUSTFG KO mice showed no apparent impairment of muscle movements, though a denervation marker, AChRγ, was elevated and Agrin-induced AChR clustering in C2C12 myotubes was inhibited. Our results clarify that loss of motor neuron TFG is sufficient for the occurrence of NMJ degeneration and muscle atrophy, though lack of muscle TFG may exert an additional effect. Reduced muscle TFG, also observed in aged mice, might be involved in age-related NMJ degeneration, and this issue merits further study.


Subject(s)
Insulin-Like Growth Factor I/genetics , Neurodegenerative Diseases/genetics , Neuromuscular Junction/genetics , Receptor, trkA/genetics , Animals , Humans , Mice , Mice, Knockout , Motor Neurons/metabolism , Motor Neurons/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Neurodegenerative Diseases/pathology , Neuromuscular Junction/pathology
10.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202925

ABSTRACT

Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.


Subject(s)
Immunomodulation , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism , Acetylcholine/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Gene Expression Regulation , Humans , Immune System/immunology , Immune System/metabolism , Immunity , Lymphocytes/immunology , Lymphocytes/metabolism , Organ Specificity , Peptides/metabolism , Peptides/pharmacology , Receptors, Muscarinic/genetics , Receptors, Nicotinic/genetics , Signal Transduction
11.
Eur J Pharmacol ; 898: 173986, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33640406

ABSTRACT

The high-affinity choline transporter CHT1 mediates choline uptake, the rate-limiting and regulatory step in acetylcholine synthesis at cholinergic presynaptic terminals. CHT1-medated choline uptake is specifically inhibited by hemicholinium-3, which is a type of choline analog that acts as a competitive inhibitor. Although the substrate choline and the inhibitor hemicholinium-3 are well-established ligands of CHT1, few potent ligands other than choline analogs have been reported. Here we show that tetrahydropyrimidine anthelmintics, known as nicotinic acetylcholine receptor agonists, act as competitive inhibitors of CHT1. A ligand-dependent trafficking assay in cell lines expressing human CHT1 was designed to search for CHT1 ligands from a collection of biologically active compounds. We found that morantel as well as other tetrahydropyrimidines, pyrantel and oxantel, potently inhibits the high-affinity choline uptake activity of CHT1 in a competitive manner similar to the inhibitor hemicholinium-3. They also inhibit the high-affinity choline transporter from the nematode Caenorhabditis elegans. Finally, tetrahydropyrimidines potently inhibit the high-affinity choline uptake in rat brain synaptosomes at a low micromolar level, resulting in the inhibition of acetylcholine synthesis. The rank order of potency in synaptosomes is as follows: morantel > pyarantel > oxantel (Ki = 1.3, 5.7, and 8.3 µM, respectively). Our results reveal that tetrahydropyrimidine anthelmintics are novel CHT1 ligands that inhibit the high-affinity choline uptake for acetylcholine synthesis in cholinergic neurons.


Subject(s)
Anthelmintics/pharmacology , Brain/drug effects , Cation Transport Proteins/antagonists & inhibitors , Choline/metabolism , Pyrimidines/pharmacology , Symporters/antagonists & inhibitors , Animals , Anthelmintics/metabolism , Binding, Competitive , Biological Transport , Brain/metabolism , Cation Transport Proteins/metabolism , Female , HEK293 Cells , Humans , Ligands , Mice , Morantel/metabolism , Morantel/pharmacology , Protein Binding , Protein Transport , Pyrantel/analogs & derivatives , Pyrantel/metabolism , Pyrantel/pharmacology , Pyrimidines/metabolism , Symporters/genetics , Symporters/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism
12.
Neurosci Res ; 171: 74-82, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33316302

ABSTRACT

Overexpression and mislocalization of aquaporin-4 (AQP4) in the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS) have previously been reported. However, how alterations of AQP4 affect interstitial bulk flow in the brain and spinal cord, the so-called glymphatic system, is unclear. Here, we report an enhanced accumulation of disease-associated SOD1 species including SOD1 oligomers in SOD1G93A;AQP4-/- mice compared with SOD1G93A mice during ALS disease progression, as analyzed by sandwich ELISA. By directly injecting SOD1 oligomers into the spinal cord parenchyma, we observed a significantly larger delay in clearance of biotinylated or fluorescent-labeled SOD1 oligomers in AQP4-/- mice than in wild-type mice. Furthermore, when we injected the fluorescent-labeled tracer protein ovalbumin into the cisterna magna and analyzed the tracer distribution in the cervical spinal cord, approximately 35 % processing ability was found to be reduced in SOD1G93A mice compared to wild-type mice. These results suggest that the glymphatic system is abnormal and that waste clearance is delayed in SOD1G93A mice.


Subject(s)
Amyotrophic Lateral Sclerosis , Superoxide Dismutase-1/metabolism , Animals , Extracellular Fluid , Mice , Mice, Transgenic , Superoxide Dismutase-1/genetics
14.
Sci Rep ; 10(1): 11996, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686737

ABSTRACT

α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and regarded as potential therapeutic targets for neurodegenerative conditions, such as Alzheimer's disease and schizophrenia. Yet, despite the assumed pathophysiological importance of the α7 nAChR, molecular physiological characterization remains poorly advanced because α7 nAChR cannot be properly folded and sorted to the plasma membranes in most mammalian cell lines, thus preventing the analyses in heterologous expression system. Recently, ER-resident membrane protein NACHO was discovered as a strong chaperone for the functional expression of α7 nAChR in non-permissive cells. Ly6H, a brain-enriched GPI-anchored neurotoxin-like protein, was reported as a novel modulator regulating intracellular trafficking of α7 nAChR. In this study, we established cell lines that stably and robustly express surface α7 nAChR by introducing α7 nAChR, Ric-3, and NACHO cDNA into HEK293 cells (Triple α7 nAChR/RIC-3/NACHO cells; TARO cells), and re-evaluated the function of Ly6H. We report here that Ly6H binds with α7 nAChRs on the cell membrane and modulates the channel activity without affecting intracellular trafficking of α7 nAChR.


Subject(s)
Cell Membrane/metabolism , Ion Channel Gating , Membrane Glycoproteins/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Cell Membrane/drug effects , Chickens , Choline/pharmacology , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Mutant Proteins/metabolism , Phosphoinositide Phospholipase C/metabolism , Protein Binding/drug effects , Solubility
15.
Acta Neuropathol Commun ; 8(1): 67, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398151

ABSTRACT

Aquaporin-4 (AQP4) has been suggested to be involved in the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), which may be due to the modulation of neuroinflammation or the impairment of interstitial fluid bulk flow system in the central nervous system. Here, we show an age-dependent impairment of several behavioral outcomes in 5xFAD AQP4 null mice. Twenty-four-hour video recordings and computational analyses of their movement revealed that the nighttime motion of AQP4-deficient 5xFAD mice was progressively reduced between 20 and 36 weeks of age, with a sharp deterioration occurring between 30 and 32 weeks. This reduction in nighttime motion was accompanied by motor dysfunction and epileptiform neuronal activities, demonstrated by increased abnormal spikes by electroencephalography. In addition, all AQP4-deficient 5xFAD mice exhibited convulsions at least once during the period of the analysis. Interestingly, despite such obvious phenotypes, parenchymal amyloid ß (Aß) deposition, reactive astrocytosis, and activated microgliosis surrounding amyloid plaques were unchanged in the AQP4-deficient 5xFAD mice relative to 5xFAD mice. Taken together, our data indicate that AQP4 deficiency greatly accelerates an age-dependent deterioration of neuronal function in 5xFAD mice associated with epileptiform neuronal activity without significantly altering Aß deposition or neuroinflammation in this mouse model. We therefore propose that there exists another pathophysiological phase in AD which follows amyloid plaque deposition and neuroinflammation and is sensitive to AQP4 deficiency.


Subject(s)
Alzheimer Disease/metabolism , Aquaporin 4/metabolism , Neuroprotection/physiology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Behavior, Animal , Brain/metabolism , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Female , Humans , Mice , Mice, Knockout , Mice, Transgenic , Plaque, Amyloid/pathology , Seizures/metabolism , Seizures/physiopathology
16.
Int Immunopharmacol ; 82: 106306, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32086096

ABSTRACT

α7 nAChRs expressed on immune cells regulate antigen-specific antibody and proinflammatory cytokine production. Using spleen cells from ovalbumin (OVA)-specific T cell receptor transgenic DO11.10 mice and the α7 nAChR agonist GTS-21, investigation of (1) antigen processing-dependent and (2) -independent, antigen presenting cell (APC)-dependent, naïve CD4+ T cell differentiation, as well as (3) non-specific APC-independent, anti-CD3/CD28 mAbs-induced CD4+ T cell differentiation, revealed the differential roles of α7 nAChRs expressed on T cells and APCs in the regulation of CD4+ T cell differentiation. GTS-21 suppressed OVA-induced antigen processing- and APC-dependent differentiation into regulatory T cells (Tregs) and effector T cells (Th1, Th2 and Th17) without affecting OVA uptake or cell viability. By contrast, GTS-21 upregulated OVA peptide-induced antigen processing-independent T cell differentiation into all lineages. During anti-CD3/CD28 mAbs-induced T cell differentiation in the presence of polarizing cytokines, GTS-21 promoted wild-type T cell differentiation into all lineages, but did not affect α7 nAChR-deficient T cell differentiation. These results demonstrate (1) that α7 nAChRs on APCs downregulate T cell differentiation by inhibiting antigen processing and thereby interfering with antigen presentation; and (2) that α7 nAChRs on T cells upregulate differentiation into Tregs and effector T cells. Thus, the divergent roles of α7 nAChRs on APCs and T cells likely regulate the intensity of immune responses. These findings suggest the possibility of using α7 nAChR agonists to harvest greater numbers of Tregs and Th1 and Th2 cells for adoptive immune therapies for treatment of autoimmune diseases and cancers.

17.
Free Radic Biol Med ; 147: 187-199, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31863908

ABSTRACT

Misfolded Cu/Zn-superoxide dismutase (SOD1) is a pathological species in a subset of amyotrophic lateral sclerosis (ALS). Oxidative stress is known to increase in affected spinal cords of ALS and is thus considered to cause damages on SOD1 leading to the misfolding and aggregation. Despite this, it still remains elusive what triggers misfolding of SOD1 under oxidizing environment. Here, we show that a thiol group of Cys111 in SOD1 is oxidized to a sulfenic acid with hydrogen peroxide and reveal that further dissociation of the bound metal ions from the oxidized SOD1 allows another free Cys residue (Cys6) to nucleophilically attack the sulfenylated Cys111. As a result, an intra-molecular disulfide bond forms between Cys6 and Cys111. Such an abnormal SOD1 with the non-canonical disulfide bond was conformationally extended with significant cytotoxicity as well as high propensity to aggregate. Taken together, we propose a new model of SOD1 misfolding under oxidizing environment, in which formation of the non-canonical intramolecular disulfide bond plays a pivotal role.


Subject(s)
Amyotrophic Lateral Sclerosis , Disulfides , Amyotrophic Lateral Sclerosis/genetics , Humans , Mutation , Oxidation-Reduction , Oxidative Stress , Protein Folding , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Zinc
18.
Front Immunol ; 10: 1102, 2019.
Article in English | MEDLINE | ID: mdl-31214160

ABSTRACT

It is now apparent that immune cells express a functional cholinergic system and that α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating T cell differentiation and the synthesis of antigen-specific antibodies and proinflammatory cytokines. Here, we investigated the specific function α7 nAChRs on T cells and antigen presenting cells (APCs) by testing the effect of GTS-21, a selective α7 nAChR agonist, on differentiation of CD4+ T cells from ovalbumin (OVA)-specific TCR transgenic DO11.10 mice activated with OVA or OVA peptide323-339 (OVAp). GTS-21 suppressed OVA-induced antigen processing-dependent development of CD4+ regulatory T cells (Tregs) and effector T cells (Th1, Th2, and Th17). By contrast, GTS-21 up-regulated OVAp-induced antigen processing-independent development of CD4+ Tregs and effector T cells. GTS-21 also suppressed production of IL-2, IFN-γ, IL-4, IL-17, and IL-6 during OVA-induced activation but, with the exception IL-2, enhanced their production during OVAp-induced activation. In addition, during antigen-nonspecific, APC-independent anti-CD3/CD28 antibody-induced CD4+ polyclonal T cell activation in the presence of respective polarizing cytokines, GTS-21 promoted development of all lineages, which indicates that GTS-21 also acts via α7 nAChRs on T cells. These results suggest 1) that α7 nAChRs on APCs suppress CD4+ T cell activation by interfering with antigen presentation through inhibition of antigen processing; 2) that α7 nAChRs on CD4+ T cells up-regulate development of Tregs and effector T cells; and that α7 nAChR agonists and antagonists could be potentially useful agents for immune response modulation and enhancement.


Subject(s)
Antigen-Presenting Cells/immunology , Benzylidene Compounds/metabolism , CD4-Positive T-Lymphocytes/immunology , Pyridines/metabolism , T-Lymphocytes, Regulatory/immunology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Benzylidene Compounds/administration & dosage , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Immunomodulation , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Transgenic , Pyridines/administration & dosage , alpha7 Nicotinic Acetylcholine Receptor/agonists
19.
Sci Rep ; 8(1): 14251, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250045

ABSTRACT

The anti-mesothelioma mAb SKM9-2 recognizes the sialylated protein HEG homolog 1 (HEG1). HEG1 is a 400 kDa mucin-like membrane protein found on mesothelioma. SKM9-2 can detect mesothelioma more specifically and sensitively than other antibodies against current mesothelioma markers; therefore, SKM9-2 would be likely useful for the precise detection and diagnosis of malignant mesothelioma. In the present study, we investigated the epitope of SKM9-2. We analyzed the binding of SKM9-2 to truncated HEG1 and candidate epitope-fused glycosylphosphatidylinositol-anchor proteins. The epitope of SKM9-2 was identified as an O-glycosylated region, 893-SKSPSLVSLPT-903, in HEG1. An alanine scanning assay of the epitope showed that SKM9-2 bound to a simple epitope in HEG1, and the SKxPSxVS sequence within the epitope was essential for SKM9-2 recognition. Mass spectrometry analysis and lectin binding analysis of soluble epitope peptides indicated that the SKM9-2 epitope, in which Ser897 was not glycosylated, contained two disialylated core 1 O-linked glycan-modified serine residues, Ser893 and Ser900. Neuraminidase treatment analysis also confirmed that the epitope in mesothelioma cells contained a similar glycan modification. The specific detection of mesothelioma with SKM9-2 can thus be performed by the recognition of sialylated glycan modification in the specific region of HEG1.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/genetics , Lung Neoplasms/genetics , Membrane Proteins/genetics , Mesothelioma/genetics , Antibodies, Monoclonal/genetics , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Glycosylation , Humans , Lectins/chemistry , Lectins/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mass Spectrometry , Membrane Proteins/immunology , Mesothelioma/immunology , Mesothelioma/pathology , Mesothelioma, Malignant , N-Acetylneuraminic Acid/metabolism , Peptides/genetics , Peptides/immunology , Polysaccharides/genetics , Polysaccharides/metabolism , Protein Binding/genetics , Protein Binding/immunology
20.
Nihon Yakurigaku Zasshi ; 152(2): 64-69, 2018.
Article in Japanese | MEDLINE | ID: mdl-30101862

ABSTRACT

Different and selective vulnerability among motor neuron subtypes are a fundamental, but unexplained, feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) motor neurons are the most vulnerable, and fast fatigue-resistant/slow (FR/S) motor neurons are relatively resistant. We identified that osteopontin (OPN) can serve as a marker of FR/S motor neurons, whereas matrix metalloproteinase-9 (MMP9) is expressed by FF motor neurons in mice. In SOD1G93A ALS model mice, as the disease progressed, OPN was secreted and accumulated as granular deposits in the extracellular matrix. We also detected OPN/MMP9 co-expressed motor neurons around the disease onset. These double positive motor neurons showed the expression of αvß3 integrin (OPN receptor) and up-regulation of ER stress markers. We discovered that the double positive motor neurons are remodeled FR/S motor neurons, which compensated for FF motor neuron degeneration (the first wave of degeneration). Genetic ablation of OPN delayed the onset of disease, but later accelerated disease progression. This reflects two modes of OPN involvement in the pathogenesis of ALS: cell-autonomous and non-cell-autonomous effects on motor neuron vulnerability. Our study suggests that OPN expressed in FR/S motor neurons is involved in the second wave of motor neuron degeneration in ALS, and an OPN-αvß3 integrin-MMP9 axis could be a potentially useful therapeutic target for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Motor Neurons , Spinal Cord , Superoxide Dismutase
SELECTION OF CITATIONS
SEARCH DETAIL
...