Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chemistry ; 29(10): e202203071, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36415055

ABSTRACT

Herein, trimethyl-ß-cyclodextrin (TMe-ß-CDx) and γ-cyclodextrin (γ-CDx) could dissolve a tetraphenylethylene derivative (TPE-OH4 ) in water through high-speed vibration milling. The fluorescence intensity of the TMe-ß-CDx-TPE-OH4 complex was much higher than that of the γ-CDx-TPE-OH4 complex, as the rotation of the central C=C double bond of TPE-OH4 after photoactivation was inhibited in a smaller TMe-ß-CDx cavity in comparison with the γ-CDx cavity. In contrast, the fluorescence intensity of the γ-CDx-TPE-OH4 complex was very weak; nevertheless, it increased after the addition of liposomes due to the transfer of TPE-OH4 from the γ-CDx cavity to the lipid membrane as a "turn-on" phenomenon. Furthermore, to apply temperature sensor, it was demonstrated that the fluorescence intensity in the liposomes depended on the phase-transition temperature. By using the fluorescence turn-on phenomenon, TPE-OH4 could detect the presence of HeLa cells and E. coli by fluorescence.


Subject(s)
Cyclodextrins , Humans , Cyclodextrins/chemistry , Liposomes , Escherichia coli , HeLa Cells
2.
RSC Adv ; 11(28): 17046-17050, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479674

ABSTRACT

Anthracene-(aminomethyl)phenylboronic acid pinacol ester (AminoMePhenylBPin) OF-2 acts as a PET (photo-induced electron transfer)-type fluorescent sensor for determination of a trace amount of water: the addition of water to organic solvents containing OF-2 causes a drastic and linear enhancement of fluorescence emission as a function of water content, which is attributed to the suppression of PET. Indeed, detection limits (DLs) for OF-2 were as low as 0.01-0.008 wt% of water in solvents, that is, the PET method makes it possible to visualize, detect, and determine a trace amount of water. Thus, in this work, in order to develop fluorescent polymeric materials for visualization and detection of water, we have achieved the preparation of various types of polymer films (polystyrene (PS), poly(4-vinylphenol) (PVP), polyvinyl alcohol (PVA), and polyethylene glycol (PEG)) which were doped with OF-2, and investigated the optical sensing properties of the OF-2-doped polymer films for water. As-prepared OF-2-doped polymer films initially exhibited green excimer emission in the PET active state, but blue monomer emission in the PET inactive state upon exposure to moisture or by water droplet. Moreover, it was found that the OF-2-doped polymer films show the reversible fluorescence properties in the dry-wet process. Herein we propose that polymer films doped with PET-type fluorescent sensors for water based on a fluorescence enhancement (turn-on) system are one of the most promising and convenient functional materials for visualizing moisture and water droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...