Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
J Oral Biosci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942194

ABSTRACT

OBJECTIVES: This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS: scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS: Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.

2.
Cell Rep ; 43(6): 114340, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865239

ABSTRACT

Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.


Subject(s)
Blastocyst , Hepatocyte Nuclear Factor 3-beta , Pluripotent Stem Cells , Salivary Glands , Animals , Salivary Glands/cytology , Salivary Glands/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Cell Lineage , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics
3.
J Oral Biosci ; 66(1): 1-4, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309695

ABSTRACT

BACKGROUND: The Journal of Oral Biosciences is dedicated to advancing and disseminating fundamental knowledge with regard to every aspect of oral biosciences. This review features review articles in the fields of "bone regeneration," "periodontitis," "periodontal diseases," "salivary glands," "sleep bruxism," and "Sjögren's syndrome." HIGHLIGHT: This review focuses on human demineralized dentin and cementum matrices for bone regeneration, oxidized low-density lipoprotein in periodontal disease and systemic conditions, the relationship between inflammatory mediators in migraine and periodontitis, phosphoinositide signaling molecules in the salivary glands, and the pathophysiologies of sleep bruxism and Sjögren's syndrome. CONCLUSION: The review articles featured in the Journal of Oral Biosciences have broadened the knowledge of readers regarding various aspects of oral biosciences. The current editorial review discusses the findings and significance of these review articles.


Subject(s)
Periodontal Diseases , Periodontitis , Sjogren's Syndrome , Sleep Bruxism , Humans , Salivary Glands , Review Literature as Topic
4.
Phys Rev Lett ; 132(2): 023402, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38277600

ABSTRACT

This study entailed the successful deployment of a novel neutron interferometer that utilizes multilayer mirrors. The apparatus facilitates a precise evaluation of the wavelength dependence of interference fringes utilizing a pulsed neutron source. Our interferometer achieved an impressive precision of 0.02 rad within a 20-min recording time. Compared to systems using silicon crystals, the measurement sensitivity was maintained even when using a simplified disturbance suppressor. By segregating beam paths entirely, we achieved successful measurements of neutron-nuclear scattering lengths across various samples. The values measured for Si, Al, and Ti were in agreement with those found in the literature, while V showed a disparity of 45%. This discrepancy may be attributable to impurities encountered in previous investigations. The accuracy of measurements can be enhanced further by mitigating systematic uncertainties that are associated with neutron wavelength, sample impurity, and thickness. This novel neutron interferometer enables us to measure fundamental parameters, such as the neutron-nuclear scattering length of materials, with a precision that surpasses that of conventional interferometers.

5.
Sci Rep ; 14(1): 1069, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212454

ABSTRACT

Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.


Subject(s)
Salivary Gland Neoplasms , Transcription Factors , Animals , Mice , Ectodysplasins/genetics , Epithelial Cells/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Salivary Gland Neoplasms/metabolism , Submandibular Gland/metabolism , Transcription Factors/metabolism , Xedar Receptor/metabolism
6.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Article in English | MEDLINE | ID: mdl-38171773

ABSTRACT

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Subject(s)
Lycium , Sjogren's Syndrome , Xerostomia , Humans , Tumor Necrosis Factor-alpha/metabolism , Lycium/metabolism , Salivary Glands/metabolism , Salivary Glands/pathology , Xerostomia/chemically induced , Xerostomia/prevention & control , Xerostomia/complications , Sjogren's Syndrome/complications , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Aquaporin 5/genetics
7.
J Oral Biosci ; 66(1): 82-89, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142941

ABSTRACT

OBJECTIVES: Aging-related salivary gland changes, such as lymphocyte infiltration and acinar cell loss decrease saliva secretion, thereby affecting quality of life. The precise molecular mechanisms underlying these changes remain unclear. METHODS: We here performed single-cell RNA sequencing to clarify gene expression changes in each cell type comprising the submandibular glands (SMGs) of adult and aged mice. RESULTS: The proportion of acinar cells decreased in various epithelial clusters annotated with cell type-specific marker genes. Expression levels of the cellular senescence markers, Cdkn2a/p16 and Cdkn1a/p21, were increased in the basal and striated ducts of aged SMGs relative to their levels in those of adult SMGs. In contrast, senescence-associated secretory phenotype-related genes, except transforming growth factor-ß, exhibited little change in expression in aged SMGs relative to adult SMGs. CONCLUSIONS: Gene Ontology analysis revealed increased expression levels of genes encoding major histocompatibility complex (MHC) class I components in the ductal component cells of aged SMGs. MHC class I expression may thus be associated with salivary gland aging.


Subject(s)
Quality of Life , Submandibular Gland , Mice , Animals , Submandibular Gland/metabolism , Salivary Glands/metabolism , Cellular Senescence , Single-Cell Analysis
8.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014349

ABSTRACT

Various patients suffer from dry mouth due to salivary gland dysfunction. Whole salivary gland generation and transplantation is a potential therapy to resolve this issue. However, the lineage permissible to design the entire salivary gland generation has been enigmatic. Here, we discovered Foxa2 as a lineage critical for generating a salivary gland via conditional blastocyst complementation (CBC). Foxa2 linage, but not Shh nor Pitx2, initiated to label between the boundary region of the endodermal and the ectodermal oral mucosa before primordial salivary gland formation, resulting in marking the entire salivary gland. The salivary gland was agenesis by depleting Fgfr2 under the Foxa2 lineage in the mice. We rescued this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts. Those mice survived until adulthood with normal salivary glands compatible in size compared with littermate controls. These results indicated that CBC-based salivary gland generation is promising for next-generation cell-based therapy.

9.
J Phys Chem B ; 127(40): 8509-8524, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37782079

ABSTRACT

In this study, we applied the concept of the "contribution factor of the first kind (CFFK)" to the original electron-transfer (ET) rate theory proposed by Marcus. Mathematical derivations provided simple and convenient formulas for estimating the relative contributions of ten physical and chemical parameters involved in the Marcus ET rate formula: (1) the maximum strength of the electronic coupling energy between two molecules, (2) the exponential decay rate of the electronic coupling energy versus the distance between both molecules, (3) the distance between both molecules, (4) the equilibrium distance between both molecules, (5) the Gibbs free energy, (6) reorganization free energy in the prefactor of the Marcus ET rate equation, (7) reorganization free energy in the denominator of the exponential term, (8) reorganization free energy in the argument of the exponential term, (9) Boltzmann constant times absolute temperature in the prefactor of the rate equation, and (10) Boltzmann constant times absolute temperature in the denominator of the exponential term. We applied our theories to (i) ET reactions at bacterial photosynthesis reaction centers, PSI and PSII, and soluble ferredoxins (Fd); (ii) intraprotein ET reactions for designed azurin mutants; and (iii) ET reactions in flavodoxin (Fld). The formulas and calculations suggest that the theory behind the CFFK is useful for quantitatively identifying major and minor physical and chemical factors and corresponding trade-offs, all of which affect the magnitude of the Marcus ET rate.

10.
Biochem Biophys Res Commun ; 681: 1-6, 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37742472

ABSTRACT

Research regarding the process of salivary gland development and elucidation of related mechanisms are considered essential for development of effective treatments for conditions associated with salivary disease. Various reports regarding the effects of bone morphogenetic protein (BMP)-2 on hard tissue cells have been presented, though few have examined those related to salivary gland formation. Using an organ culture system, the present study was conducted to investigate the function of BMP-2 in salivary gland formation. Salivary glands obtained from embryonic day 13.5 mice and treated with BMP-2 showed suppression of primordial cell differentiation and also gland formation in a concentration-dependent manner. Furthermore, gland formation inhibition was suppressed by concurrent treatment with dorsomorphin, an inhibitor of the Smad pathway. Expression levels of AQP5, a marker gene for acinar cells, and Prol1, an opiorphin expressed in the lacrimal gland, were decreased in salivary glands treated with BMP-2. The present findings indicate that suppression of salivary gland formation, especially acinar differentiation, is induced by BMP-2, a phenomenon considered to be related to the Smad pathway.

11.
J Oral Biosci ; 65(1): 104-110, 2023 03.
Article in English | MEDLINE | ID: mdl-36736698

ABSTRACT

OBJECTIVES: The self-regeneration of exocrine tissues, including salivary glands, is limited and their regeneration mechanism has not yet been fully elucidated. Here we identify the role of adipose-derived mesenchymal stem cells (AMSCs) in salivary gland regeneration. METHODS: AMSCs expressing mesenchymal stem cell markers were applied to a submandibular gland injury model and the mechanism of salivary gland repair and regeneration was analyzed. RESULTS: Transplanted green fluorescent protein (GFP)-labeled AMSCs grew tightly together and promoted ductal regeneration in the regenerative nodule, with slight infiltration of nonspecific immune cells. A comprehensive gene analysis through RNA-sequencing revealed increased expression of bone morphogenetic protein (BMP), transforming growth factor (TGF), and Wnt in AMSC-transplanted regenerative nodules. The factors released from AMSCs scavenge hydrogen peroxidase-induced reactive oxygen species (ROS) through Wnt promoter activity in vitro. Furthermore, AMSC-conditioned medium recovered the growth of the hydrogen peroxidase-damaged primordium of the submandibular gland culture ex vivo. CONCLUSIONS: These results suggest that AMSC-released factors scavenge ROS and maintain salivary gland repair and regeneration via paracrine effects. Thus, AMSCs could be a practical and applicable tool for use in salivary gland regeneration.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cells , Adipose Tissue/metabolism , Salivary Ducts , Reactive Oxygen Species/metabolism , Mesenchymal Stem Cells/metabolism , Submandibular Gland
12.
J Oral Biosci ; 65(1): 1-12, 2023 03.
Article in English | MEDLINE | ID: mdl-36740188

ABSTRACT

BACKGROUND: The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT: This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION: The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.


Subject(s)
Salivary Glands , Tooth , Humans , Epithelial-Mesenchymal Transition , Facial Pain/metabolism , Odontogenesis , Tooth Root , Review Literature as Topic
14.
J Oral Biosci ; 65(1): 40-46, 2023 03.
Article in English | MEDLINE | ID: mdl-36693474

ABSTRACT

OBJECTIVES: Tissue differentiation is regulated by transcription factors. This study aimed to identify candidate transcription factors that induce periodontal ligament (PDL) cell differentiation in human pluripotent stem cells (hPSCs). METHODS: Human PDL tissues were scraped from the root surfaces of extracted teeth for orthodontic treatment and cultured using the explant culture method. We used RNA-seq to generate gene expression profiles of third-passage PDL cells and compared them with those of undifferentiated human induced pluripotent stem cells (hiPSCs) and human embryonic stem cell (hESC)-derived neural crest (NC) cells (publicly available data). RESULTS: Primary cultured PDL cells exhibited a spindle-shaped fibroblast-like appearance and the gene expression of several PDL cell-specific markers. The gene expression profiles of PDL cells were relatively similar to those of hESC-derived NC cells but not those of undifferentiated hiPSCs. Thirty-seven transcription factors were identified as upregulated genes in PDL cells. Pathway analysis showed that differentially expressed genes were enriched in several functional groups and pathways, including the SMAD 2/3 nuclear pathway. CONCLUSIONS: We identified 37 upregulated transcription genes in primary cultured PDL cells compared with hESC-derived NC cells. Regulating these genes and the SMAD signaling pathway may be promising ways to induce PDL cells from hPSC-derived NC cells.


Subject(s)
Induced Pluripotent Stem Cells , Periodontal Ligament , Humans , Periodontal Ligament/metabolism , Transcriptome , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Transcription Factors/metabolism , Biomarkers/metabolism
15.
Nat Cell Biol ; 24(11): 1595-1605, 2022 11.
Article in English | MEDLINE | ID: mdl-36253535

ABSTRACT

Salivary glands act as virus reservoirs in various infectious diseases and have been reported to be targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanisms underlying infection and replication in salivary glands are still enigmatic due to the lack of proper in vitro models. Here, we show that human induced salivary glands (hiSGs) generated from human induced pluripotent stem cells can be infected with SARS-CoV-2. The hiSGs exhibit properties similar to those of embryonic salivary glands and are a valuable tool for the functional analysis of genes during development. Orthotopically transplanted hiSGs can be engrafted at a recipient site in mice and show a mature phenotype. In addition, we confirm SARS-CoV-2 infection and replication in hiSGs. SARS-CoV-2 derived from saliva in asymptomatic individuals may participate in the spread of the virus. hiSGs may be a promising model for investigating the role of salivary glands as a virus reservoir.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , Animals , Mice , SARS-CoV-2 , Organoids , Salivary Glands
16.
Lab Invest ; 102(11): 1245-1256, 2022 11.
Article in English | MEDLINE | ID: mdl-35810235

ABSTRACT

Myoepithelial (ME) cells in exocrine glands exhibit both epithelial and mesenchymal features, contributing to fluid secretion through contraction. However, the regulation mechanism of behind this unique phenotype in salivary glands remains unclear. We established a flow cytometry-based purification method using cell surface molecules, epithelial cell adhesion molecule (EpCAM) and alpha 6 integrin (CD49f), to characterize ME cells. EpCAM+CD49fhigh cells showed relatively high expression of ME cell-marker genes, such as alpha-smooth muscle actin (α-SMA). For lineage tracing and strict isolation, tdTomato+EpCAM+CD49fhigh-ME cells were obtained from myosin heavy chain 11 (Myh11) -CreERT2/tdTomato mice. Transcriptome analysis revealed that expression of genes involved in the epithelial-mesenchymal transition, including Snai2, were upregulated in the ME cell-enriched subset. Snai2 suppression in stable ME cells decreased α-SMA and increased Krt14 expression, suggesting that ME cell features may be controlled by the epithelial-mesenchymal balance regulated by Snai2. In contrast, ME cells showed reduced ME properties and expressed the ductal markers Krt18/19 under sphere culture conditions. Notch signaling was activated under sphere culture conditions; excessive activation of Notch signaling accelerated Krt18/19 expression, but reduced α-SMA and Snai2 expression, suggesting that the behavior of Snai2-expressing ME cells may be controlled by Notch signaling.


Subject(s)
Actins , Myosin Heavy Chains , Mice , Animals , Integrin alpha6/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Actins/metabolism , Myosin Heavy Chains/metabolism , Epithelial Cells/metabolism , Muscle, Smooth/metabolism , Salivary Glands/metabolism , Biomarkers/metabolism
17.
Methods Mol Biol ; 2429: 247-255, 2022.
Article in English | MEDLINE | ID: mdl-35507166

ABSTRACT

Salivary glands are exocrine glands composed of several cell types, including the ductal, acinar, and basal/myoepithelial cells. They play important roles in maintaining oral homeostasis and health. During early murine development, the salivary glands, which arise as epithelial buds, are produced from primitive oral epithelia through an interaction between the oral epithelium and mesenchyme.We recently reported that salivary gland organoids can be generated from mouse embryonic stem cells (ESCs). We recapitulated the process of embryonic salivary gland development using an organoid culture system. The mouse ESC-derived salivary gland organoids consisted of acinar-, ductal-, and myoepithelial-like cells. In this chapter, we describe a protocol for differentiating salivary gland organoids from ESCs .


Subject(s)
Mouse Embryonic Stem Cells , Organoids , Animals , Mesoderm , Mice , Organogenesis , Organoids/metabolism , Salivary Glands
18.
J Oral Biosci ; 64(1): 1-7, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35143953

ABSTRACT

BACKGROUND: The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT: This review features review articles in the fields of "Extracellular Vesicles," "Propolis," "Odontogenic Tumors," "Periodontitis," "Periodontium," "Flavonoids," "Lactoferrin," "Dental Plaque," "Anatomy," "Induced Pluripotent Stem Cells," "Bone Cell Biology," "Dysgeusia," "Dental Caries," and "Dental Pulp Cavity," in addition to the review article by the winners of the "Lion Award" ("Sox9 function in salivary gland development") presented by the Japanese Association for Oral Biology. CONCLUSION: These reviews in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.


Subject(s)
Awards and Prizes , Dental Caries , Periodontitis , Propolis , Humans , Periodontium
19.
Mod Pathol ; 35(2): 177-185, 2022 02.
Article in English | MEDLINE | ID: mdl-34404905

ABSTRACT

Next-generation sequencing of oral squamous cell carcinoma (OSCC) has revealed TP53 as the most frequently mutated gene in OSCC mutually exclusive with human papillomavirus infection. Oral epithelial dysplasia (OED) is defined as a precancerous lesion of OSCC by the current World Health Organization (WHO) classification; therefore, it is assumed that TP53 mutations occur in early precancerous conditions such as OED. Here, we conducted an integrated analysis of TP53, including whole coding sequencing of TP53, FISH analysis of the 17p13.1 locus, and immunohistochemical analysis for p53 (p53-IHC), in 40 OED cases. We detected 20 mutations in 16 (40%) OED cases, and four cases, each harbored two mutations. FISH analysis revealed six of 24 cases (25%) had a deletion on 17p13.1, and four cases had concurrent TP53 mutations and 17p13.1 deletion (2-hit). Also, the increased frequency of TP53 mutations in higher degrees of OED implies acquisition of the mutation is a major event toward OSCC. p53-IHC revealed that overall cases could be categorized into four patterns that correlate well with the mutational status of TP53. Especially, two patterns, broad p53 expression type (pattern HI) and p53 null type (pattern LS), strongly correlated with a missense mutation and nonsense mutation, respectively. Furthermore, seven of the 40 cases progressed to SCC, and six of these seven cases presented pattern HI or LS. Therefore, patterns HI and LS have a high risk for malignant transformation if excisional treatment is not performed irrespective of the dysplasia grade. Although the current WHO classification mainly focuses on morphological criteria for the diagnosis of OED, interobserver discrepancy appears in some instances of the OED diagnosis. Our immunohistochemical analysis supports a more accurate pathological diagnosis for OED in cases of low dysplastic changes or of differential diagnosis with non-dysplastic lesions.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/pathology , Humans , Immunohistochemistry , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mutation , Staining and Labeling , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
20.
Biochem Biophys Res Commun ; 586: 55-62, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34826701

ABSTRACT

Salivary gland hypofunction due to radiation therapy for head and neck cancer or Sjögren syndrome may cause various oral diseases, which can lead to a decline in the quality of life. Cell therapy using salivary gland stem cells is a promising method for restoring hypofunction. Herein, we show that salivary gland-like cells can be induced from epithelial tissues that were transdifferentiated from mouse embryonic fibroblasts (MEFs). We introduced four genes, Dnp63a, Tfap2a, Grhl2, and Myc (PTMG) that are known to transdifferentiate fibroblasts into oral mucosa-like epithelium in vivo into MEFs. MEFs overexpressing these genes showed epithelial cell characteristics, such as cobblestone appearance and E-cadherin positivity, and formed oral epithelial-like tissue under air-liquid interface culture conditions. The epithelial sheet detached from the culture dish was infected with adenoviruses encoding Sox9 and Foxc1, which we previously identified as essential factors to induce salivary gland formation. The cells detached from the cell sheet formed spheres 10 days after infection and showed a branching morphology. The spheres expressed genes encoding basal/myoepithelial markers, cytokeratin 5, cytokeratin 14, acinar cell marker, aquaporin 5, and the myoepithelial marker α-smooth muscle actin. The dissociated cells of these primary spheres had the ability to form secondary spheres. Taken together, our results provide a new strategy for cell therapy of salivary glands and hold implications in treating patients with dry mouth.


Subject(s)
Acinar Cells/metabolism , Fibroblasts/metabolism , Forkhead Transcription Factors/genetics , SOX9 Transcription Factor/genetics , Salivary Glands/metabolism , Spheroids, Cellular/metabolism , Acinar Cells/cytology , Adenoviridae/genetics , Adenoviridae/metabolism , Animals , Aquaporin 5/genetics , Aquaporin 5/metabolism , Biomarkers/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Transdifferentiation/genetics , Cell- and Tissue-Based Therapy/methods , Embryo, Mammalian , Fibroblasts/cytology , Forkhead Transcription Factors/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Keratin-14/genetics , Keratin-14/metabolism , Keratin-5/genetics , Keratin-5/metabolism , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOX9 Transcription Factor/metabolism , Salivary Glands/cytology , Spheroids, Cellular/cytology , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...