Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 20(3): 1401-1411, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30768255

ABSTRACT

Aerogels with a density of 4.2-22.8 kg/m3 were obtained from bacterial cellulose synthesized under static and dynamic cultivation conditions on a molasses medium. The strength properties and porous structure of the aerogels strongly depended on their density. With an aerogel density of 22.8 kg/m3, the modulus of elasticity at 80% compression of the sample was 0.1 MPa. The decrease in the density of aerogels led to an increase in the pore sizes ranging from 20 to 1000 µm and a decrease in the modulus of elasticity. These characteristics were more pronounced in aerogels obtained from bacterial cellulose under static cultivation conditions. The aerogels had a low coefficient of thermal conductivity (0.0257 W m-1 °C-1), which is comparable to the thermal conductivity of air, and moderate thermal stability because the degradation processes of the aerogels began at 237 °C. The aerogels obtained from bacterial cellulose had high sound absorption coefficients in the frequency range of 200-5000 Hz, which makes it possible to use the aerogels as heat- and sound-insulating materials.


Subject(s)
Bacteria/chemistry , Cellulose/chemistry , Gels/chemistry , Materials Testing , Microscopy, Electron, Scanning , Spectrophotometry, Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...