Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Int J Biol Macromol ; : 133823, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002912

ABSTRACT

Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.

2.
Crit Rev Biotechnol ; : 1-28, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705837

ABSTRACT

Vibrio species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains of Vibrio diseases are increasing day by day. Control of Vibrio species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, Vibrio control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of Vibrio-related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging Vibrio species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of Vibrio-related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.

3.
Sci Total Environ ; 929: 172433, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38626824

ABSTRACT

Greenhouse gas emissions are significantly contributing to climate change, posing one of the serious threats to our planet. Addressing these emissions urgently is imperative to prevent irreversible planetary changes. One effective long-term mitigation strategy is achieving carbon neutrality. Although numerous countries aim for carbon neutrality by 2050, only a few are on track to realize this ambition. Existing technological solutions, including chemical absorption, cryogenic separation, and membrane separation, are available but tend to be costly and time intensive. Bio-capture methods present a promising opportunity in greenhouse gas mitigation research. Recent developments in biotechnology for capturing greenhouse gases have demonstrated both effectiveness and long-term benefits. This review emphasizes the recent advancements in bio-capture techniques, showcasing them as dependable and economical solutions for carbon neutrality. The article briefly outlines various bio-capture methods and underscores their potential for industrial application. Moreover, it investigates into the challenges faced when integrating bio-capture with carbon capture and storage technology. The study concludes by exploring the recent trends and prospective enhancements in ecosystem revitalization and industrial decarbonization through green conversion techniques, reinforcing the path towards carbon neutrality.

5.
Environ Sci Pollut Res Int ; 30(46): 103225-103243, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37688695

ABSTRACT

The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively. The highest concentration of MPs was detected near the river mouths and industrial areas where the waste discharge rate and anthropogenic activities dominate. Fibre-type MPs are the most abundant, with an average of nearly 64%, followed by fragments, films, microbeads, and foams. The most dominant polymer types were polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyester (PET). Overall, the current study shows a better understanding of MPs occurrence and potential sources in the Miri coastal area.

7.
Front Oncol ; 13: 1059441, 2023.
Article in English | MEDLINE | ID: mdl-36969009

ABSTRACT

The development of new therapeutic strategies is on the increase for prostate cancer stem cells, owing to current standardized therapies for prostate cancer, including chemotherapy, androgen deprivation therapy (ADT), radiotherapy, and surgery, often failing because of tumor relapse ability. Ultimately, tumor relapse develops into advanced castration-resistant prostate cancer (CRPC), which becomes an irreversible and systemic disease. Hence, early identification of the intracellular components and molecular networks that promote prostate cancer is crucial for disease management and therapeutic intervention. One of the potential therapeutic methods for aggressive prostate cancer is to target prostate cancer stem cells (PCSCs), which appear to be a primary focal point of cancer metastasis and recurrence and are resistant to standardized therapies. PCSCs have also been documented to play a major role in regulating tumorigenesis, sphere formation, and the metastasis ability of prostate cancer with their stemness features. Therefore, the current review highlights the origin and identification of PCSCs and their role in anti-androgen resistance, as well as stemness-related signaling pathways. In addition, the review focuses on the current advanced therapeutic strategies for targeting PCSCs that are helping to prevent prostate cancer initiation and progression, such as microRNAs (miRNAs), nanotechnology, chemotherapy, immunotherapy, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing system, and photothermal ablation (PTA) therapy.

8.
View (Beijing) ; : 20210020, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35941909

ABSTRACT

The pandemic respiratory disease COVID-19 has spread over the globe within a small span of time. Generally, there are two important points are being highlighted and considered towards the successful diagnosis and treatment process. The first point includes the reduction of the rate of infections and the next one is the decrease of the death rate. The major threat to public health globally progresses due to the absence of effective medication and widely accepted immunization for the COVID-19. Whereas, understanding of host susceptibility, clinical features, adaptation of COVID-19 to new environments, asymptomatic infection is difficult and challenging. Therefore, a rapid and an exact determination of pathogenic viruses play an important role in deciding treatments and preventing pandemic to save the people's lives. It is urgent to fix a standardized diagnostic approach for detecting the COVID-19. Here, this systematic review describes all the current approaches using for screening and diagnosing the COVID-19 infectious patient. The renaissance in pathogen due to host adaptability and new region, facing creates several obstacles in diagnosis, drug, and vaccine development process. The study shows that adaptation of accurate and affordable diagnostic tools based on candidate biomarkers using sensor and digital medicine technology can deliver effective diagnosis services at the mass level. Better prospects of public health management rely on diagnosis with high specificity and cost-effective manner along with multidisciplinary research, specific policy, and technology adaptation. The proposed healthcare model with defined road map represents effective prognosis system.

9.
ACS Appl Bio Mater ; 5(8): 3576-3607, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35839513

ABSTRACT

The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.


Subject(s)
Artificial Intelligence , Lab-On-A-Chip Devices , Humans , Polymers
10.
J Public Health Afr ; 13(Suppl 2): 2423, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-37497134

ABSTRACT

Few studies have looked at the psychological mechanisms that govern soccer officials' performance to this point. The main goal of the study is to identify age-related changes in mental toughness among officials. Sixty active national officials were chosen at random from the All-India Football Federation's national officials' roster (AIFF). Group A is 25-30 years old, with a mean and SD of 27.4±3.39 (lower age group); Group B is 31-35 years old, with a mean and SD of 31.8±1.28 (middle age group); and Group C is 36-40 years old, with a mean and SD of 37.6±1.98 (higher age group). The Psychological Performance Inventory (PPI), developed by James E. Loehr in 1982, was chosen as the research's test item. This instrument evaluates seven aspects of mental toughness, including selfconfidence, negative energy control, attention control, visualisation and imagery control, motivation, positive energy control, and attitude control. One-way analysis of variance (ANOVA), with a significance threshold of 0.05, was used as the statistical approach to assess the study's hypothesis. The finding of the research paper shows no significant difference among various groups.

11.
Hum Genet ; 140(10): 1487-1498, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34424406

ABSTRACT

Migration and admixture history of populations have always been curious and an interesting theme. The West Coast of India harbours a rich diversity, bestowing various ethno-linguistic groups, with many of them having well-documented history of migrations. The Roman Catholic is one such distinct group, whose origin was much debated. While some historians and anthropologists relating them to ancient group of Gaud Saraswat Brahmins, others relating them for being members of the Jews Lost Tribes in the first Century migration to India. Historical records suggests that this community was later forcibly converted to Christianity by the Portuguese in Goa during the Sixteenth Century. Till date, no genetic study was done on this group to infer their origin and genetic affinity. Hence, we analysed 110 Roman Catholics from three different locations of West Coast of India including Goa, Kumta and Mangalore using both uniparental and autosomal markers to understand their genetic history. We found that the Roman Catholics have close affinity with the Indo-European linguistic groups, particularly Brahmins. Additionally, we detected genetic signal of Jews in the linkage disequilibrium-based admixture analysis, which was absent in other Indo-European populations, who are inhabited in the same geographical regions. Haplotype-based analysis suggests that the Roman Catholics consist of South Asian-specific ancestry and showed high drift. Ancestry-specific historical population size estimation points to a possible bottleneck around the time of Goan inquisition (fifteenth century). Analysis of the Roman Catholics data along with ancient DNA data of Neolithic and bronze age revealed that the Roman Catholics fits well in a basic model of ancient ancestral composition, typical of most of the Indo-European caste groups of India. Mitochondrial DNA (mtDNA) analysis suggests that most of the Roman Catholics have aboriginal Indian maternal genetic ancestry; while the Y chromosomal DNA analysis indicates high frequency of R1a lineage, which is predominant in groups with higher ancestral North Indian (ANI) component. Therefore, we conclude that the Roman Catholics of Goa, Kumta and Mangalore regions are the remnants of very early lineages of Brahmin community of India, having Indo-Europeans genetic affinity along with cryptic Jewish admixture, which needs to be explored further.


Subject(s)
Catholicism , Ethnicity/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population/statistics & numerical data , Geography , Population Dynamics , Ethnicity/statistics & numerical data , Europe , Humans , India , Jews/genetics , Phylogeny
12.
J Infect Public Health ; 14(7): 927-937, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34119847

ABSTRACT

The worldwide pandemic situation of COVID-19 generates a situation in which healthcare resources such as diagnostic kits, drugs and basic healthcare infrastructure were on shortage throughout the period, along with negative impact on socio-economic system. Standardized public healthcare models were missing in pandemic situation, covering from hospitalized patient care to local resident's healthcare managements in terms of monitoring, assess to diagnosis and medicines. This exploratory and intervention-based study with the objective of proposing COVID-19 Care Management Model representing comprehensive care of society including patients (COVID-19 and other diseases) and healthy subjects under integrated framework of healthier management model. Shifting policy towards technology-oriented models with well-aligned infrastructure can achieve better outcomes in COVID-19 prevention and care. The planned development of technical healthcare models for prognosis and improved treatment outcomes that take into account not only genomics, proteomics, nanotechnology, materials science perspectives but also the possible contribution of advanced digital technologies is best strategies for early diagnosis and infections control. In view of current pandemic, a Healthier Healthcare Management Model is proposed here as a source of standardized care having technology support, medical consultation, along with public health model of sanitization, distancing and contact less behaviours practices. Effective healthcare managements have been the main driver of healthier society where, positive action at identified research, technology and management segment more specifically public health, patient health, technology selection and political influence has great potential to enhanced the global response to COVID-19. The implementation of such practices will deliver effective diagnosis and control mechanism and make healthier society.


Subject(s)
COVID-19 , Delivery of Health Care , Humans , Pandemics , Public Health , SARS-CoV-2
13.
J Oleo Sci ; 70(6): 777-785, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33967171

ABSTRACT

Sesbania cannabina (Retz.) Pers. (Dhaincha) is a member of family Fabaceae spread over several countries in tropical and subtropical regions of the world. Sesbania aculeata, Sesbania drummondii, Sesbania grandiflora, Sesbania rostrata, Sesbania sesban, and Sesbania speciosa are other members of this family. The agricultural, nutritional and pharmaceutical applications of Sesbania species are known to farmers, villagers, and the tribes since ages and are well studied by researchers. However, the significance of Sesbania as an industrial crop has not been recognized till now. The objective of this study was extraction and characterization of Sesbania cannabina seed oil (SCSO) for potential engineering applications. The seed oil was extracted with hexane in a Soxhlet extractor. Yield was only 2.32% w/w due to long storage at high temperature in seed house. Sesbania cannabina seed oil methyl ester (SCSOME) was prepared via esterification and transesterification for analysis of fatty acid composition of extracted oil. SCSO has high iodine value (118 g I2/100 g) and high saponification value (185.79 mg KOH/g) making the oil suitable for use as candle stocks or in soap making. However, these applications were ruled out on account of being insignificant for oil available in limited quantity. The oil has high viscosity index (174.19), high onset (382°C) and offset (450°C) decomposition temperatures, endothermic nature, and shear rate thickening behaviour. These properties make SCSO a good candidate for application as specialty lubricant required under severe operating conditions of high temperature and high shear rate or as insulating and cooling transformer oil.


Subject(s)
Plant Oils/chemistry , Seeds/chemistry , Sesbania/chemistry , Hot Temperature , Lubricants/chemistry , Lubricants/isolation & purification , Plant Oils/isolation & purification , Viscosity
14.
Hereditas ; 157(1): 31, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32680568

ABSTRACT

BACKGROUND: Genetic diathesis of suicide is supported by family and twin studies. Few candidate gene pathways are known, but does not explain fully the complexity of suicide genetic risk. Recent investigations opting for Genome-Wide Association Studies (GWAS) resulted in finding additional targets, but replication remained a challenge. In this respect small isolated population approach in several complex disease phenotypes is found encouraging. The present study is an attempt to re-test some of the reported significant SNPs for suicide among a small historical high- risk isolated population from Northeast India. METHODS: Two hundred ten cases (inclusive of depressed, suicide attempter and depressed + suicide attempter) and 249 controls were considered in the present study which were evaluated for the psychiatric parameters. Sixteen reported significant SNPs for suicide behaviour were re-tested using association approach under various genetic models. Networking by GeneMANIA tool was used for function prediction of the associated genes. RESULTS: Seven SNPs (of 6 genes) remained significant in different genetic models. On networking genes with significant SNPs IL7, RHEB, CTNN3, KCNIP4, ARFGEF3 are found in interaction with already known candidate gene pathways while SNP rs1109089 (RHEB) gained further support from earlier expression studies. NUGGC gene is in complete isolation. CONCLUSIONS: Small population approach in replicating significant SNPs is useful in complex phenotypes like suicide. This study explored the region-specific demographics of India by identifying vulnerable population for suicide via genetic association analysis in bringing into academic and administrative forum, the importance of suicide as a disease and its biological basis.


Subject(s)
Alleles , Genetic Association Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Suicide , Adolescent , Adult , Case-Control Studies , Female , Genome-Wide Association Study , Humans , India/epidemiology , Male , Odds Ratio , Population Surveillance , Risk Assessment , Risk Factors , Young Adult
15.
J Infect Public Health ; 12(3): 380-387, 2019.
Article in English | MEDLINE | ID: mdl-30611734

ABSTRACT

BACKGROUND: The host genetic factors play important role in determining the outcome of visceral leishmaniasis (VL). Macrophage migration inhibitory factor (MIF) is an important host cytokine, which is a key regulator of innate immune system. Genetic variants in MIF gene have been found to be associated with several inflammatory and infectious diseases. Role of MIF is well documented in leishmaniasis diseases, including Indian visceral leishmaniasis, where elevated level of serum MIF has been associated with VL phenotypes. However, there was no genetic study to correlate MIF variants in VL, therefore, we aimed to study the possible association of three reported MIF gene variants -794 CATT, -173G > C and non-coding RNA gene LOC284889 in Indian VL phenotype. METHODS: Study subjects comprised of 214 VL patients along with ethnically and demographically matched 220 controls from VL endemic regions of Bihar state in India. RESULTS: We found no significant difference between cases and controls in allelic, genotypic and haplotype frequency of the markers analysed [-794 CATT repeats (χ2=0.86; p=0.35; OR=0.85; 95% CI=0.61-1.19); -173 G>C polymorphism (χ2=1.11; p=0.29; OR=0.83; 95% CI=0.59-1.16); and LOC284889 (χ2=0.78; p=0.37; OR=0.86; 95% CI=0.61-1.20)]. CONCLUSION: Since we did not find any significant differences between case and control groups, we conclude that sequencing of complete MIF gene and extensive study on innate and adaptive immunity genes may help in identifying genetic variations that are associated with VL susceptibility/resistance among Indians.


Subject(s)
Genetic Predisposition to Disease , Leishmaniasis, Visceral/epidemiology , Macrophage Migration-Inhibitory Factors/genetics , Adolescent , Adult , Case-Control Studies , Female , Genetic Association Studies , Genotype , Humans , India/epidemiology , Leishmaniasis, Visceral/genetics , Male , Middle Aged , Young Adult
16.
Sci Rep ; 8(1): 18065, 2018 12 24.
Article in English | MEDLINE | ID: mdl-30584247

ABSTRACT

Olive flounder (Paralichthys olivaceus) is one of economically valuable fish species in the East Asia. In comparison with its economic importance, available genomic information of the olive flounder is very limited. The mass mortality caused by variety of pathogens (virus, bacteria and parasites) is main problem in aquaculture industry, including in olive flounder culture. In this study, we carried out transcriptome analysis using the olive flounder gill tissues after infection of three types of pathogens (Virus; Viral hemorrhagic septicemia virus, Bacteria; Streptococcus parauberis, and Parasite; Miamiensis avidus), respectively. As a result, we identified total 12,415 differentially expressed genes (DEG) from viral infection, 1,754 from bacterial infection, and 795 from parasite infection, respectively. To investigate the effects of pathogenic infection on immune response, we analyzed Gene ontology (GO) enrichment analysis with DEGs and sorted immune-related GO terms per three pathogen groups. Especially, we verified various GO terms, and genes in these terms showed down-regulated expression pattern. In addition, we identified 67 common genes (10 up-regulated and 57 down-regulated) present in three pathogen infection groups. Our goals are to provide plenty of genomic knowledge about olive flounder transcripts for further research and report genes, which were changed in their expression after specific pathogen infection.


Subject(s)
Flounder/genetics , Hemorrhagic Septicemia, Viral/genetics , Parasitic Diseases/genetics , Streptococcal Infections/genetics , Transcriptome , Animals , Flounder/microbiology , Flounder/parasitology , Flounder/virology , Gene Expression Profiling , Hemorrhagic Septicemia, Viral/metabolism , Parasitic Diseases/metabolism , Streptococcal Infections/metabolism
17.
Am J Hum Biol ; 30(5): e23170, 2018 09.
Article in English | MEDLINE | ID: mdl-30099804

ABSTRACT

OBJECTIVES: Skin color is a highly visible and variable trait across human populations. It is not yet clear how evolutionary forces interact to generate phenotypic diversity. Here, we sought to unravel through an integrative framework the role played by three factors-demography and migration, sexual selection, and natural selection-in driving skin color diversity in India. METHODS: Skin reflectance data were collected from 10 diverse socio-cultural populations along the latitudinal expanse of India, including both sexes. We first looked at how skin color varies within and between these populations. Second, we compared patterns of sexual dimorphism in skin color. Third, we studied the influence of ultraviolet radiation on skin color throughout India. Finally, we attempted to disentangle the interactions between these factors in the context of available genetic data. RESULTS: We found that the relative importance of these forces varied between populations. Social factors and population structure have played a stronger role than natural selection in shaping skin color diversity across India. Phenotypic overprinting resulted from additional genetic mutations overriding the skin lightening effect of variants such as the SLC24A5 rs1426654-A allele in some populations, in the context of the variable influence of sexual selection. Furthermore, specific genotypes are not associated reliably with specific skin color phenotypes. This result has relevance for DNA forensics and ancient DNA research. CONCLUSIONS: India is a crucible of macro- and micro-evolutionary forces, and the complex interactions of physical and social forces are visible in the patterns of skin color seen today in the country.


Subject(s)
Biological Evolution , Phenotype , Selection, Genetic , Skin Pigmentation/physiology , Female , Humans , India , Male , Sex Factors , Skin Pigmentation/genetics , Skin Pigmentation/radiation effects , Ultraviolet Rays
18.
Genes Genomics ; 40(7): 707-713, 2018 07.
Article in English | MEDLINE | ID: mdl-29934806

ABSTRACT

Transposable elements (TEs) are mobile genetic sequences that comprise a large portion of vertebrate genomes. The olive flounder (Paralichthys olivaceus) is a valuable marine resource in East Asia. The scope of most genomic studies on the olive flounder is limited to its immunology as their focus is the prevention of mass mortality of this species. Thus, for a broader understanding of the species, its genomic information is consistently in demand. Transcripts sequences were acquired from transcriptome analysis using gill tissues of 12 olive flounders. Distribution of TEs inserted in exonic region of the olive flounder genome was analyzed using RepeatMasker ( http://www.repeatmasker.org/ ). We found 1140 TEs in the exonic region of the genome and long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) insertions occurred with forward orientation preferences. Transposons belonging to the hAt, Gypsy, and LINE 1 (L1) subfamilies were the most abundant DNA transposons, LTRs, and long interspersed elements (LINEs), respectively. Finally, we carried out a gene ontology analysis to determine the function of TE-fused genes. These results provide some genomic information about TEs that is useful for future research on changes in properties and functions of genes by TEs in the olive flounder genome.


Subject(s)
DNA Transposable Elements/genetics , Exons/genetics , Flounder/genetics , Genome/genetics , Animals , Evolution, Molecular , Gene Expression Profiling , Terminal Repeat Sequences/genetics
19.
Mol Cells ; 41(6): 495-505, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29754470

ABSTRACT

Several bacterial etiological agents of streptococcal disease have been associated with fish mortality and serious global economic loss. Bacterial identification based on biochemical, molecular, and phenotypic methods has been routinely used, along with assessment of morphological analyses. Among these, the molecular method of 16S rRNA sequencing is reliable, but presently, advanced genomics are preferred over other traditional identification methodologies. This review highlights the geographical variation in strains, their relatedness, as well as the complexity of diagnosis, pathogenesis, and various control methods of streptococcal infections. Several limitations, from diagnosis to control, have been reported, which make prevention and containment of streptococcal disease difficult. In this review, we discuss the challenges in diagnosis, pathogenesis, and control methods and suggest appropriate molecular (comparative genomics), cellular, and environmental solutions from among the best available possibilities.


Subject(s)
Aquaculture/methods , Streptococcal Infections/genetics , Streptococcus/pathogenicity , Animals , Humans , Streptococcal Infections/pathology
20.
Gene ; 628: 16-23, 2017 Sep 10.
Article in English | MEDLINE | ID: mdl-28698161

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that mainly bind to the seed sequences located within the 3' untranslated region (3' UTR) of target genes. They perform an important biological function as regulators of gene expression. Different genes can be regulated by the same miRNA, whilst different miRNAs can be regulated by the same genes. Here, the evolutionary conservation and expression pattern of miR-10a-3p in olive flounder and rock bream was examined. Binding sites (AAAUUC) to seed region of the 3' UTR of target genes were highly conserved in various species. The expression pattern of miR-10a-3p was ubiquitous in the examined tissues, whilst its expression level was decreased in gill tissues infected by viral hemorrhagic septicemia virus (VHSV) compared to the normal control. In the case of rock bream, the spleen, kidney, and liver tissues showed dominant expression levels of miR-10a-3p. Only the liver tissues in the rock bream samples infected by the iridovirus indicated a dominant miR-10a-3p expression. The gene ontology (GO) analysis of predicted target genes for miR-10a-3p revealed that multiple genes are related to binding activity, catalytic activity, cell components as well as cellular and metabolic process. Overall the results imply that the miR-10a-3p could be used as a biomarker to detect VHSV infection in olive flounder and iridovirus infection in rock bream. In addition, the data provides fundamental information for further study of the complex interaction between miR-10a-3p and gene expression.


Subject(s)
Evolution, Molecular , Fish Diseases/genetics , Fishes/genetics , Flounder/genetics , MicroRNAs/genetics , Animals , Fish Diseases/microbiology , Fishes/microbiology , Flounder/microbiology , Gene Expression Profiling , Homeodomain Proteins/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus
SELECTION OF CITATIONS
SEARCH DETAIL
...