Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38303534

ABSTRACT

Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.

2.
Oncol Res ; 31(4): 405-421, 2023.
Article in English | MEDLINE | ID: mdl-37415740

ABSTRACT

Ionizing radiation is frequently used to treat solid tumors, as it causes DNA damage and kill cancer cells. However, damaged DNA is repaired involving poly-(ADP-ribose) polymerase-1 (PARP-1) causing resistance to radiation therapy. Thus, PARP-1 represents an important target in multiple cancer types, including prostate cancer. PARP is a nuclear enzyme essential for single-strand DNA breaks repair. Inhibiting PARP-1 is lethal in a wide range of cancer cells that lack the homologous recombination repair (HR) pathway. This article provides a concise and simplified overview of the development of PARP inhibitors in the laboratory and their clinical applications. We focused on the use of PARP inhibitors in various cancers, including prostate cancer. We also discussed some of the underlying principles and challenges that may affect the clinical efficacy of PARP inhibitors.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Antineoplastic Agents/therapeutic use , DNA Repair
3.
FASEB J ; 36(12): e22654, 2022 12.
Article in English | MEDLINE | ID: mdl-36421014

ABSTRACT

The therapeutic toxicity and resistance to currently available treatment options are major clinical challenges for the management of lung cancer. As a novel strategy, we synthesized analogues of a known flavonol, fisetin, which has shown anti-tumorigenic potential against cancer in cell culture with no adverse effects in animal models. We studied the synthetic analogues of fisetin for their anti-cancer potential against lung cancer cells, toxicity in mice and efficacy in a xenograft model. Brominated fisetin analogues were screened for their effects on the viability of A549 and H1299 lung cancer cells, and three analogues (3a, 3b, 3c), showed improved activity compared to fisetin. These analogues were more effective in restricting lung cancer cell proliferation, inducing G2 M phase cell cycle arrest and apoptosis. The fisetin analogues also downregulated EGFR/ERK1/2/STAT3 pathways. Fisetin analogue-induced apoptosis was accompanied by a higher Bax to Bcl-2 expression ratio. Based on the in vitro studies, the most effective fisetin analogue 3b was evaluated for in vivo toxicity, wherein it did not show any hepatotoxicity or adverse health effects in mice. Furthermore, analogue 3b showed greater antitumor efficacy (p < .001) as compared to its parent compound fisetin in a human lung cancer cell xenograft study in athymic mice. Together, our data suggest that the novel fisetin analogue 3b is more effective in restricting lung cancer cell growth, both in vitro as well as in vivo, without any apparent toxicity, supporting its further development as a novel anti-lung cancer agent.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , MAP Kinase Signaling System , Lung Neoplasms/drug therapy , Flavonoids/pharmacology , Flavonols/pharmacology , Cell Cycle Checkpoints , Apoptosis , ErbB Receptors , STAT3 Transcription Factor
4.
J Cancer Prev ; 27(3): 170-181, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36258717

ABSTRACT

Emergence of radioresistance in prostate cancer (PCa) cells is a major obstacle in cancer therapy and contributes to the relapse of the disease. EGF receptor (EGFR) signaling plays an important role in the development of radioresistance. Herein, we have assessed the modulatory effects of silibinin on radiation-induced resistance via DNA repair pathways in EGFR-knockdown DU145 cells. shRNA-based silencing of EGFR was done in radioresistant human PCa DU145 cells and effects of ionizing radiation (IR) and silibinin were assessed using clonogenic and trypan blue assays. Furthermore, radiosensitizing effects of silibinin on PCa in context with EGFR were analyzed using flow cytometry, comet assay, and immunoblotting. Silibinin decreased the colony formation ability with an increased death of DU145 cells exposed to IR (5 Gray), with a concomitant decrease in Rad51 protein expression. Silibinin (25 µM) augmented the IR-induced cytotoxic effect in EGFR-knockdown PCa cells, along with induction of G2/M phase cell cycle arrest. Further, we studied homologous recombination (HR) and non-homologous end joining (NHEJ) pathways in silibinin-induced DNA double-strand breaks in EGFR-knockdown DU145 cells. Silibinin down-regulated the expression of Rad51 and DNA-dependent protein kinase proteins without any considerable effect on Ku70 and Ku80 in IR-exposed EGFR-knockdown PCa cells. The pro-survival signaling proteins, phospho-extracellular signal-regulated kinases (ERK)1/2, phospho-Akt and phospho-STAT3 were decreased by silibinin in EGFR-deficient PCa cells. These findings suggest a novel mechanism of silibinin-induced radiosensitization of PCa cells by targeting DNA repair pathways, HR and NHEJ, and suppressing the pro-survival signaling pathways, ERK1/2, Akt and STAT3, in EGFR-knockdown PCa cells.

5.
Molecules ; 27(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35268608

ABSTRACT

Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.


Subject(s)
Hepatitis E virus
SELECTION OF CITATIONS
SEARCH DETAIL
...