Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Planta Med ; 90(2): 96-110, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37846499

ABSTRACT

Oxystelma esculentum has been used as a folk medicine to treat jaundice, throat infections, and skin problems. In the current study, the bone fracture-healing properties of a flavonoid-enriched fraction (Oxy50-60F) of O. esculentum were investigated in Swiss mice using a drill-hole injury model. Oxy50-60F (1 mg/kg/day, 5 mg/kg/day, and 10 mg/kg/day) was administered orally (from the next day) after a 0.6 mm drill-hole injury in mice femur mid-diaphysis for 7 days and 14 days. Parathyroid hormone (40 µg/kg; 5 times/week) was given subcutaneously as the positive control. Confocal imaging for bone regeneration, micro-architecture of femur bones, ex vivo mineralization, hematoxyline and eosin staining, measurement of reactive oxygen species, and gene expression of osteogenic and anti-inflammatory genes were studied. Quercetin, kaempferol, and isorhamnetin glycosides were identified in the active fraction using mass spectrometry techniques. Our results confirm that Oxy50-60F treatment promotes fracture healing and callus formation at drill-hole sites and stimulates osteogenic and anti-inflammatory genes. Oxy50-60F administration to fractured mice exhibited significantly better micro-CT parameters in a dose-dependent manner and promoted nodule mineralization at days 7 and 14 post-injury. Oxy50-60F also prevents ROS generation by increasing expression of the SOD2 enzyme. Overall, this study reveals that Oxy50-60F has bone regeneration potential in a cortical bone defect model, which supports its use in delayed-union and non-union fracture cases.


Subject(s)
Fracture Healing , Fractures, Bone , Mice , Animals , Flavonoids/pharmacology , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry , Fractures, Bone/drug therapy , Anti-Inflammatory Agents
2.
Rapid Commun Mass Spectrom ; 37(3): e9440, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36411261

ABSTRACT

RATIONALE: Cajanus scarabaeoides, belonging to the Fabaceae family, is an underutilized herb and traditionally used to treat several ailments. However, it is not well explored phytochemically. Therefore, mass spectrometry (MS)-based phytochemical analysis was carried out to investigate the bioactive ingredients of the herb. METHODS: A ultra-performance liquid chromatography (UPLC) coupled to photodiode array detection (PDA) and electrospray ionization (ESI) tandem mass spectrometry (UPLC-PDA-ESI-MS/MS) system was used for the qualitative and quantitative analysis of phytochemicals. The chromatographic separation was achieved on the Acquity BEH C18 column (150 × 2.1 mm, 1.7 µm) using a gradient system consisting of three solvents, acetonitrile, methanol, and 0.1% formic acid, used at a flow rate of 0.300 ml/min. RESULTS: Sixteen bioactive ingredients (gallic acid, gallocatechin, epigallocatechin, catechin, procyanidin dimer, epicatechin, procyanidin trimer, isoorientin, orientin, vitexin, isovitexin, quercetin-mono-O-glycoside, isoquercitrin, luteolin-7-O-glucoside, quercetin, and luteolin) were identified and structurally characterized. Consequently, 12 compounds were reported for the first time from C. scarabaeoides, and 13 were quantitatively determined in different seasons. Isoorientin (10.2-7.1% w/w) and orientin (5.78-5.17% w/w) were the most abundant constituents in the dry weight of plant material, followed by vitexin and isovitexin in the rainy season. CONCLUSIONS: The phytochemical investigation has revealed that C. scarabaeoides could be a potential alternate source of bioactive ingredients, namely, isoorientin, orientin, vitexin, and isovitexin, contributing to further exploration of its biological activity. In addition, analytical methods can be used for the rapid identification and quantification of bioactive ingredients in C. scarabaeoides.


Subject(s)
Cajanus , Proanthocyanidins , Tandem Mass Spectrometry/methods , Seasons , Chromatography, High Pressure Liquid/methods , Quercetin , Chromatography, Liquid
3.
Metabolites ; 12(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35888731

ABSTRACT

Alstonia scholaris is a well-known source of alkaloids and widely recognized for therapeutic purposes to treat the ailments in human and livestock. However, the composition and production of alkaloids vary due to tissue specific metabolism and seasonal variation. This study investigated alkaloids in leaves, stems, trunk barks, fruits, and flowers of A. scholaris. The impact of seasonal changes on the production of alkaloids in the leaves of A. scholaris was also investigated. One and two-dimensional Nuclear Magnetic Resonance (NMR) experiments were utilized for the characterization of alkaloids and total eight alkaloids (picrinine, picralinal, akuammidine, 19 S scholaricine, 19,20 E vallesamine, Nb-demethylalstogustine N-Oxide, Nb-demethylalstogustine, and echitamine) were characterized and quantified. Quantitative and multivariate analysis suggested that the alkaloids content is tissue specific, illustrating the effect of plant tissue organization on alkaloidal production in A. scholaris. The results suggest that the best part to obtain alkaloids is trunk barks, since it contains 7 alkaloids. However, the best part for isolating picrinine, picralinal, akuammidine, 19 S scholaricine, and 19,20 E vallesamine is fruit, since it shows highest amount of these alkaloids. Undoubtedly, NMR and statistical methods are very helpful to differentiate the profile of alkaloids in A. scholaris.

4.
Phytochem Anal ; 33(5): 746-753, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35355343

ABSTRACT

INTRODUCTION: Nerium oleander is an eminent source of structurally diverse cardiac glycosides (CGs), plays a prominent role in the treatment of heart failure, and inhibits the proliferation of cancer cell lines. CGs exert their cardiotonic action by binding to the extracellularly exposed recognition sites on Na+ /K+ -ATPase, an integral membrane protein that establishes the electrochemical gradient of Na+ and K+ ions across the plasma membrane. OBJECTIVE: We aimed to quantitatively determine CGs and their seasonal variation in leaf and stem samples of N. oleander utilizing UHPLC-ESI-MS/MS techniques. METHODS: The UHPLC-ESI-MS/MS analytical method was developed utilizing multiple reaction monitoring (MRM) mode. The Waters BEH C18 (150 mm × 2.1 mm, 1.7 µm) column was used with a 22-min linear gradient consisting of acetonitrile and 5 mM ammonium acetate buffer. RESULTS: In total 21 CGs were quantitatively determined in the seasonal leaf and stem samples of N. oleander along with the absolute quantitation of the three chemical markers odoroside H (244.8 µg/g), odoroside A (231.4 µg/g), and oleandrin (703.9 µg/g). The season-specific accumulation of chemical markers was observed in the order of predominance odoroside A (summer season, stem), odoroside H (winter season, stem), and oleandrin (rainy season, leaf). Besides this, the remaining 18 CGs were relatively quantified in the same samples. CONCLUSION: The developed method is simple and reliable and can be used for the identification and quantification of multiple CGs in N. oleander.


Subject(s)
Cardiac Glycosides , Nerium , Cardiac Glycosides/analysis , Chromatography, High Pressure Liquid/methods , Seasons , Tandem Mass Spectrometry
5.
Chem Biodivers ; 18(12): e2100557, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34643999

ABSTRACT

Murraya koenigii (L.) Spreng (Curry leaf) is a commercially important medicinal plant in South Asia, containing therapeutically valuable carbazole alkaloids (CAs). Thus, the quantitative evaluation of these compounds from different climatic zones of India are an important aspect for quality assessment and economic isolation of targeted compounds from the plant. In this study, quantitative estimation of CAs among 34 Indian natural populations of M. koenigii was assessed using UPLC/MS/MS. The collected populations represent the humid subtropical, tropical wet & dry, tropical wet, semi-arid, arid, and montane climatic zones of India. A total of 11 CAs viz. koenine-I, murrayamine A, koenigine, koenimbidine, koenimbine, O-methylmurrayamine A, girinimbine, mahanine, 8,8''-biskoenigine, isomahanimbine, and mahanimbine were quantified using multiple reaction monitoring (MRM) experiments within 5.0 min. The respective range for natural abundance of CAs were observed as 0.097-1.222, 0.092-5.014, 0.034-0.661, 0.010-1.673, 0.013-7.336, 0.010-0.310, 0.010-0.114, 0.049-5.288, 0.031-1.731, 0.491-3.791, and 0.492-5.399 mg/g in leaves of M. koenigii. The developed method shown linearity regression coefficient (r2 >0.9995), LOD (0.003-0.248 ng/mL), LOQ (0.009-0.754 ng/mL), and the recovery was between 88.803-103.729 %. The bulk of these CAs were recorded in their highest concentrations in the humid subtropical zone, followed by the tropical wet & dry zones of India. Further, principal component analysis (PCA) was performed which differentiated the climatic zones according to the dominant and significant CAs contents within the populations. The study concludes that the method established is simple, rapid, with high sample throughput, and can be used as a tool for commercial purposes and quality control of M. koenigii.


Subject(s)
Alkaloids/analysis , Carbazoles/analysis , Murraya/chemistry , Principal Component Analysis , Chromatography, High Pressure Liquid , India , Molecular Structure , Tandem Mass Spectrometry
6.
Nat Prod Res ; 32(4): 430-434, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28368664

ABSTRACT

The bioassay guided fractionation of methanolic extract of Murraya koenigii (L.) Spreng. leaves resulted in the isolation of seven pyranocarbazoles. These were evaluated against four bacterial strains and ten Candida sp. including two matched pair of fluconazole sensitive/resistant clinical isolates. Out of seven, three i.e. Koenine (mk279), Koenigine (mk309) and Mahanine (mk347) exhibited significant antibacterial activity MIC90 3.12-12.5 µg/mL against bacterial strains Streptococcus aureus and Klebsiella pneumonia compared with standard drug Kanamycin MIC90 12.5 µg/mL. However, only mk309 was found active against variety of Candida species MIC90 12.5-100 µg/mL. It was observed that hydroxylation at C-6 and C-7 positions in the studied pyranocarbazoles activate the bioactivity. Simultaneously, decrease in Log P value compares with -H and -O-CH3 substituted derivatives. The study is focused on selective antifungal and antibacterial activity of pyranocarbazoles on bacterial strains S. aureus, K. pneumonia and variety of Candida species with structure activity relationship observations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Murraya/chemistry , Antifungal Agents/chemistry , Candida/drug effects , Carbazoles/chemistry , Carbazoles/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Leaves/chemistry , Staphylococcus aureus/drug effects , Structure-Activity Relationship
7.
Nat Prod Commun ; 10(2): 293-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25920265

ABSTRACT

Carbazole alkaloids induce apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway and they are targeted as potential anticancer agents. Thus, the naturally occurring carbazole alkaloids become important as precursors for lead optimization in drug development. A method based on ultra performance liquid chromatography coupled with photodiode-array detection was developed using reverse phase isocratic elution with 85:15 acetonitrile and ammonium acetate buffer (5 mM). Seven samples of Murrya koenigii (L.) Spreng. from north-central India (Uttar Pradesh) were analyzed. All three targeted analytes, koenimbidine (mk1), koenimbine (mk2) and mahanimbine (mk3), were well separated within 4.0 min with linearity of the calibration curves (r2 > 0.999). The limits of detection and quantification of mk1, mk2 and mk3 were 0.7, 0.4, 0.04 µg/mL and 2.14, 1.21, 0.12 µg/mL, respectively. The natural abundance of mk1, mk2 and mk3 was 0.06-0.20, 0.04-0.69 and 0.13-0.42%, w/w, respectively, in the dried powdered leaves, whereas, the tissue specific distribution of carbazole alkaloids was observed in the order of predominance, mk1 leaf>root>fruit>stem, mk2 fruit>leaf >stem>root, and mk3 fruit>leaf>root>stem. The developed method was validated for limits of detection and quantification, repeatability, accuracy, precision and stability. This is the first report on the natural abundance of the major carbazole alkaloids in M. koenigii and the method developed can be used in HPLC/UPLC systems.


Subject(s)
Alkaloids/chemistry , Carbazoles/chemistry , Murraya/chemistry , Plant Leaves/chemistry
8.
Pharmacogn Mag ; 11(Suppl 4): S501-10, 2015 Oct.
Article in English | MEDLINE | ID: mdl-27013786

ABSTRACT

BACKGROUND: Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. MATERIALS AND METHODS: For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. RESULTS: Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. CONCLUSION: Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. SUMMARY: The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters.CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy.The CMHF decreased lipogenesis in both liver and adipose tissue.CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes. Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF: CMA water fraction, CMHF: CMA hexane fraction, FAS: Fatty acid synthase, SREBP1c: Sterol regulatory element binding protein 1c, ACC: Acetyl CoA carboxylase, LXR α: Liver X receptor α.

SELECTION OF CITATIONS
SEARCH DETAIL
...