Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874706

ABSTRACT

The work elucidates the importance of accurate Parkinson's disease classification within medical diagnostics and introduces a novel framework for achieving this goal. Specifically, the study focuses on enhancing disease identification accuracy utilizing boosting methods. A standout contribution of this work lies in the utilization of a light gradient boosting machine (LGBM) coupled with hyperparameter tuning through grid search optimization (GSO) on the Parkinson's disease dataset derived from speech recording signals. In addition, the Synthetic Minority Over-sampling Technique (SMOTE) has also been employed as a pre-processing technique to balance the dataset, enhancing the robustness and reliability of the analysis. This approach is a novel addition to the study and underscores its potential to enhance disease identification accuracy. The datasets employed in this work include both gender-specific and combined cases, utilizing several distinctive feature subsets including baseline, Mel-frequency cepstral coefficients (MFCC), time-frequency, wavelet transform (WT), vocal fold, and tunable-Q-factor wavelet transform (TQWT). Comparative analyses against state-of-the-art boosting methods, such as AdaBoost and XG-Boost, reveal the superior performance of our proposed approach across diverse datasets and metrics. Notably, on the male cohort dataset, our method achieves exceptional results, demonstrating an accuracy of 0.98, precision of 1.00, sensitivity of 0.97, F1-Score of 0.98, and specificity of 1.00 when utilizing all features with GSO-LGBM. In comparison to AdaBoost and XGBoost, the proposed framework utilizing LGBM demonstrates superior accuracy, achieving an average improvement of 5% in classification accuracy across all feature subsets and datasets. These findings underscore the potential of the proposed methodology to enhance disease identification accuracy and provide valuable insights for further advancements in medical diagnostics.

2.
Expert Syst ; 39(3): e12677, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33821074

ABSTRACT

The recent outbreak of a novel coronavirus, named COVID-19 by the World Health Organization (WHO) has pushed the global economy and humanity into a disaster. In their attempt to control this pandemic, the governments of all the countries have imposed a nationwide lockdown. Although the lockdown may have assisted in limiting the spread of the disease, it has brutally affected the country, unsettling complete value-chains of most important industries. The impact of the COVID-19 is devastating on the economy. Therefore, this study has reported about the impact of COVID-19 epidemic on various industrial sectors. In this regard, the authors have chosen six different industrial sectors such as automobile, energy and power, agriculture, education, travel and tourism and consumer electronics, and so on. This study will be helpful for the policymakers and government authorities to take necessary measures, strategies and economic policies to overcome the challenges encountered in different sectors due to the present pandemic.

3.
Interdiscip Sci ; 13(2): 212-228, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33566337

ABSTRACT

This work presents a smart healthcare system for the detection of various abnormalities present in the gastrointestinal (GI) region with the help of time-frequency analysis and convolutional neural network. In this regard, the KVASIR V2 dataset comprising of eight classes of GI-tract images such as Normal cecum, Normal pylorus, Normal Z-line, Esophagitis, Polyps, Ulcerative Colitis, Dyed and lifted polyp, and Dyed resection margins are used for training and validation. The initial phase of the work involves an image pre-processing step, followed by the extraction of approximate discrete wavelet transform coefficients. Each class of decomposed images is later given as input to a couple of considered convolutional neural network (CNN) models for training and testing in two different classification levels to recognize its predicted value. Afterward, the classification performance is measured through the following measuring indices: accuracy, precision, recall, specificity, and F1 score. The experimental result shows 97.25% and 93.75% of accuracy in the first level and second level of classification, respectively. Lastly, a comparative performance analysis is carried out with several other previously published works on a similar dataset where the proposed approach performs better than its contemporary methods.


Subject(s)
Gastrointestinal Diseases , Wavelet Analysis , Delivery of Health Care , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...