Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Article in English | MEDLINE | ID: mdl-38833068

ABSTRACT

A prolonged and compromised wound healing process poses a significant clinical challenge, necessitating innovative solutions. This research investigates the potential application of nanotechnology-based formulations, specifically nanofiber (NF) scaffolds, in addressing this issue. The study focuses on the development and characterization of multifunctional nanofibrous scaffolds (AZL-CS/PVA-NF) composed of azilsartan medoxomil (AZL) enriched chitosan/polyvinyl alcohol (CS/PVA) through electrospinning. The scaffolds underwent comprehensive characterization both in vitro and in vivo. The mean diameter and tensile strength of AZL-CS/PVA-NF were determined to be 240.42 ± 3.55 nm and 18.05 ± 1.18 MPa, respectively. A notable drug release rate of 93.86 ± 2.04%, was observed from AZL-CS/PVA-NF over 48 h at pH 7.4. Moreover, AZL-CS/PVA-NF exhibited potent antimicrobial efficacy for Staphylococcus aureus and Pseudomonas aeruginosa. The expression levels of Akt and CD31 were significantly elevated, while Stat3 showed a decrease, indicating a heightened tissue regeneration rate with AZL-CS/PVA-NF compared to other treatment groups. In vivo ELISA findings revealed reduced inflammatory markers (IL-6, IL-1ß, TNF-α) within treated skin tissue, implying a beneficial effect on injury repair. The comprehensive findings of the present endeavour underscore the superior wound healing activity of the developed AZL-CS/PVA-NF scaffolds in a Wistar rat full-thickness excision wound model. This indicates their potential as novel carriers for drugs and dressings in the field of wound care.

2.
Indian J Pharmacol ; 56(2): 120-128, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38687316

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the efficacy and safety of topical nanoemulsion (NE)-loaded cream and gel formulations of Hippophae rhamnoides L. (sea buckthorn [SBT]) fruit oil for wound healing. MATERIALS AND METHODS: The NE-loaded cream and gel formulations of H. rhamnoides L. (SBT) fruit oil (IPHRFH) were prepared and evaluated for their wound-healing activity on female Sprague-Dawley (SD) rats. They were further divided into groups (seven) and the wound-healing activity was determined by measuring the area of the wound on the wounding day and on the 0th, 4th, 8th, and 10th days. The acute dermal toxicity of the formulations was assessed by observing the erythema, edema, and body weight (BW) of the rats. RESULTS: The topical NE cream and gel formulations of H. rhamnoides L. (SBT) fruit oil showed significant wound-healing activity in female SD rats. The cream formulation of IPHRFH showed 78.96%, the gel showed 72.59% wound contraction on the 8th day, whereas the positive control soframycin (1% w/w framycetin) had 62.29% wound contraction on the 8th day. The formulations also showed a good acute dermal toxicity profile with no changes significantly affecting BW and dermal alterations. CONCLUSIONS: The results of this study indicate that topical NE-loaded cream and gel formulation of H. rhamnoides L. (SBT) fruit oil are safe and effective for wound healing. The formulations showed no signs of acute dermal toxicity in female SD rats.


Subject(s)
Emulsions , Gels , Hippophae , Plant Oils , Rats, Sprague-Dawley , Wound Healing , Animals , Female , Hippophae/chemistry , Hippophae/toxicity , Wound Healing/drug effects , Rats , Plant Oils/toxicity , Plant Oils/administration & dosage , Fruit , Skin/drug effects , Administration, Cutaneous , Administration, Topical , Nanoparticles/toxicity
3.
Cureus ; 16(3): e55898, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38595882

ABSTRACT

BACKGROUND: Orthodontic treatment is a widely embraced intervention aimed at enhancing dental aesthetics and correcting malocclusions among adolescents. However, concerns persist regarding its potential impact on oral health, particularly on the development of dental caries. This study aimed to systematically investigate the relationship between orthodontic treatment and the incidence of new carious lesions among adolescents. METHODS: A prospective cohort design involving adolescents aged 12-18 years was employed. A total of 82 patients met the inclusion criteria. In addition, an age-matched control group of 82 participants who did not undergo orthodontic treatment was included. The study included both a treatment group undergoing orthodontic treatment (braces or aligners) and an age-matched control group that did not undergo any orthodontic intervention. Demographic characteristics, orthodontic treatment details, and oral hygiene practices were documented at baseline and throughout the study period. Dental examinations at six-month intervals post-treatment were conducted to track the incidence and progression of carious lesions. RESULTS: The demographic characteristics, baseline oral health status, orthodontic treatment details, and oral hygiene practices were comparable between the treatment and control groups. Post-orthodontic treatment assessment revealed a slightly higher incidence of new carious lesions in the treatment group (14.6%) than in the control group (9.8%), although this difference was not statistically significant (p = 0.15). Dental examinations at six-month intervals demonstrated a gradual increase in caries incidence over time in both groups, with no substantial disparities observed. CONCLUSIONS: This study provides a comprehensive examination of the relationship between orthodontic treatment and the incidence of new carious lesions among adolescents. While a trend towards higher caries incidence in the treatment group was observed, the difference was not statistically significant. These findings contribute to the existing body of knowledge and emphasize the need for ongoing research to guide clinical practice.

4.
Int J Pharm ; 654: 123975, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38452833

ABSTRACT

Targeted therapies enhance the efficacy of tumour screening and management while lowering side effects. Multiple tumours, including liver cancer, exhibit elevated levels of folate receptor expression. This research attempted to develop surface-functionalised bosutinib cubosomes against hepatocellular carcinoma. The novelty of this work is the anti-hepatic action of bosutinib (BST) and folic acid-modified bosutinib cubosomes (BSTMF) established through proto-oncogene tyrosine-protein kinase (SrC)/ focal adhesion kinase(FAK), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and cell cytotoxicity. Later, the in-vivo pharmacokinetics of BSTMF were determined for the first time. The strong affinity of folic acid (FA) for folate receptors allows BSTMF to enter cells via FA receptor-mediated endocytosis. The particle size of the prepared BSTMF was 188.5 ± 2.25 nm, and its zeta potential was -20.19 ± 2.01 mV, an encapsulation efficiency of 90.31 ± 3.15 %, and a drug release rate of 76.70 ± 2.10 % for 48 h. The surface architecture of BSTMF was identified using transmission electron microscopy (TEM) and Atomic force microscopy (AFM). Cell-line studies demonstrated that BSTMF substantially lowered the viability of Hep G2 cells compared to BST and bosutinib-loaded cubosomes (BSTF). BSTMF demonstrated an elevated BST concentration in tumour tissue than in other organs and also displayed superior pharmacokinetics, implying that they hold potential against hepatic cancers. This is the first study to show that BSTMF may be effective against liver cancer by targeting folate receptors and triggering SrC/FAK-dependent apoptotic pathways. Multiple parameters demonstrated that BSTMF enhanced anticancer targeting, therapeutic efficacy, and safety in NDEA-induced hepatocellular carcinoma.


Subject(s)
Aniline Compounds , Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Nitriles , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Folic Acid , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Cell Line, Tumor , Particle Size
5.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423444

ABSTRACT

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Subject(s)
Chitosan , Nanoparticles , Humans , Phytic Acid , Pectins/pharmacology , Carnitine , MCF-7 Cells , Colon , Drug Carriers
6.
Int J Biol Macromol ; 257(Pt 1): 127945, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951434

ABSTRACT

MicroRNAs (miRNAs) play a crucial role in cancer progression by selectively inducing translational degradation of messenger RNA (mRNA) via sequence-specific interactions with the 3'-untranslated region (3'-UTR). The potential targeting of miRNA has been recognized as a significant avenue for investigating the biological progression of diverse cancer types. Consequently, targeting of pri-miRNA and pre-miRNA by phytochemicals emerges as a viable strategy in the realm of anticancer therapies. Among phytochemicals, triterpenoids have garnered significant recognition for their chemotherapeutic and chemopreventive capabilities in combating multiple cancers. To date, there is a dearth of literature about the molecular interactions between triterpenoids and miRNAs. The primary objective of this investigation is to discern the potential triterpenoids that can function as modulators for specific miRNAs, namely pri-miRNA-19b-2, pre-miR21, microRNA 20b, pri-miRNA-208a, pri-miRNA-378a, pri-miRNA-320b-2, and pri-miRNA-300, achieved through the use of in silico investigations. The study primarily focused on performing drug-likeness, computer-aided toxicity, and pharmacokinetic prediction studies for triterpenoids. Furthermore, molecular docking and simulation techniques were employed to investigate these compounds. The triterpenoids studied were shown to have drug-likeness characteristics, although asiatic acid, lupeol, and pristimerin were able to pass all toxicity tests. Among the triterpenoids that underwent docking, pristimerin had a significant binding energy of -10.9 kcal/mol during its interaction with pri-miR-378a. The stable interaction between the pristimerin and miRNA complex was demonstrated by molecular dynamics simulation. As a result, pristimerin has the potential to act as a modulator of carcinogenic miRNAs, making it a promising candidate for cancer prevention and treatment due to its tailored modulation of miRNA activity.


Subject(s)
MicroRNAs , Neoplasms , Pentacyclic Triterpenes , Triterpenes , Humans , RNA Processing, Post-Transcriptional , Triterpenes/pharmacology , Angiogenesis , Molecular Docking Simulation , RNA Precursors/metabolism , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Cell Proliferation
7.
ACS Omega ; 8(49): 47313-47314, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107899

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.0c05846.].

8.
J Microbiol Methods ; 215: 106860, 2023 12.
Article in English | MEDLINE | ID: mdl-38008307

ABSTRACT

Bacterial-based genotoxicity test systems play a significant role in the detection and evaluation of genotoxicity in vitro and have gained importance due to attributes like wide applicability, speed, high sensitivity, good reproducibility, and simplicity. The Salmonella microsomal mutagenicity assay was created by Ames and colleagues at the beginning of the 1970s, and it was based on the fundamental notion that in auxotrophic bacterial strains with inhibited growth, a mutant gene would revert to its original state on exposure to genotoxicants. This is the most successful and widely used in vitro genotoxicity test. Later, a number of additional test systems that incorporated DNA repair mechanisms including the bacterial SOS response were created. Genetic engineering has further provided significant advancement in these test systems with the development of highly sophisticated bacterial tester strains with significantly increased sensitivity to evaluate the chemical nature of hazardous substances and pollutants. These bacterial bioassays render an opportunity to detect the defined effects of compounds at the molecular level. In this review, all the aspects related to the bacterial system in genotoxicity assessment have been summarized and their role is elaborated concerning real-time requirements and future perspectives.


Subject(s)
Bacteria , DNA Damage , Reproducibility of Results , Mutagenicity Tests , Bacteria/genetics , Mutagenesis
9.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732353

ABSTRACT

Breast cancer is the second-leading cause of cancer-related death in women and the most often diagnosed malignancy. As the majority of chemotherapeutic medications are associated with recurrence, drug resistance, and side effects, scientists are shifting to beneficial agents for prevention and treatment, such as natural molecules. Myricetin 3-rhamnoside, a natural flavonol glycoside is known for diverse pharmacological activities but fewer reports describe the antiproliferative ability. The study aims to investigate the antiproliferative efficacy and target [hyaluronidase (HYAL) and ornithine decarboxylase (ODC), two poor breast cancer prognostic markers] modulatory potential of myricetin 3-rhamnoside on breast cancer cell lines using cytotoxicity assays and in silico docking, molecular dynamics analysis, cell-free and cell-based test methods. Myricetin 3-rhamnoside significantly retard the growth of MDA-MB-231 cells in SRB (IC50 88.64 ± 7.14 µM) and MTT (56.26 ± 8.50 µM) assay. It suppressed the transition of cells to the S-phase by inducing arrest in the G0/G1 phase with a fold change of 1.10. It shows robust binding interaction with ODC (-7.90 kcal/mol) and HYAL (-9.46 kcal/mol) and inhibits ODC (15.22 ± 2.61 µM) and HYAL (11.92 ± 2.89 µM) activity, but in a cell-based assay, the prominent response was observed against HYAL (21.46 ± 4.03 µM). Besides, it shows a 1.38 fold-down regulation of HYAL and forms a stable complex with HYAL. The binding pocket for myricetin 3-rhamnoside and the simulation pocket during the simulation are identical, indicating that myricetin 3-rhamnoside is actively blocking hyaluronidase. The computational prediction suggests it is a safe molecule. These observations imply that myricetin 3-rhamnoside could be used as a pharmacophore to design and synthesize a novel and safe agent for managing hormone-independent breast cancer.Communicated by Ramaswamy H. Sarma.

10.
J Biomol Struct Dyn ; : 1-17, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37526232

ABSTRACT

Lung cancer is still the most frequent cause of cancer-related death, accounting for nearly two million cases yearly. As cancer is a multifactorial disease, developing novel molecular therapeutics that can simultaneously target multiple associated cellular processes has become necessary. Ion channels are diverse regulators of cancer-related processes such as abnormal proliferation, invasion, migration, tumor progression, inhibition of apoptosis, and chemoresistance. Among the various families of ion channels, the transient receptor potential canonical channel family steps out in the context of lung cancer, as several members have been postulated as prognostic markers for lung cancer. Phytochemicals have been found to have health benefits in the treatment of a variety of diseases and disorders. Among phytochemicals, monoterpenes are effective in treating both the early and late stages of cancer. The molecular docking interaction analysis was conducted to evaluate the binding potential of selected monoterpenes with TRPC3, TRPC4, TRPC5, and TRPC6 involved in different phases of carcinogenesis. Amongst the selected monoterpenes, thymoquinone exhibited the highest binding energy of -6.7 kcal/mol against the TRPC4 channel, and all amino acid binding residues were similar to those of the known inhibitor for TRPC4. In addition, molecular-dynamic simulation results parameters, such as RMSD, RMSF, and Rg, indicated that thymoquinone did not impact the protein compactness and exhibited stability during the interaction. The average interaction energy between thymoquinone and TRPC4 protein was -26.85 kJ/mol. In-silico Drug-likeness and ADMET profiling indicated that thymoquinone is a druggable candidate with minimal toxicity. We propose further investigation and evaluation of thymoquinone for lead optimization and drug development.Communicated by Ramaswamy H. Sarma.


Thymoquinone exhibited the highest BE −6.7 kcal/mol against the TRPC4 channel.Thymoquinone passed all drug-likeness parameters.Thymoquinone showed 99.38% of intestinal absorption in ADMET analysis.MD confirms thymoquinone forms stable molecular interaction with TRPC4.

11.
Food Chem Toxicol ; 179: 113988, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586679

ABSTRACT

Cathepsin-D (CATD) inhibitors' design and development drawn interest due to their potential therapeutic applications in managing different cancer types, including lung cancer. This study investigated myricitrin, a flavonol-3-O-rhamnoside, for its binding affinity to CATD. Molecular docking experiments revealed a strong binding affinity (-7.8 kcal/mol). Molecular dynamics (MD) simulation confirmed the complex's stability, while enzyme activity studies showed inhibitory concentration (IC50) of 35.14 ± 6.08 µM (in cell-free) and 16.00 ± 3.48 µM (in cell-based) test systems. Expression analysis indicated downregulation of CATD with a fold change of 1.35. Myricitrin demonstrated antiproliferative effects on NCIH-520 cells [IC50: 64.11 µM in Sulphorhodamine B (SRB), 24.44 µM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], but did not affect healthy CHANG cells. It also prolonged the G2/M phase (at 10 µM: 1.19-fold; at 100 µM: 1.13-fold) and increased sub-diploid population by 1.35-fold. Based on the analysis done using SwissADME program, it is predicted that myricitrin is not a cytochrome p450s (CYPs) inhibitor, followed the rule of Ghose and found not permeable to the blood-brain barrier (BBB) which suggests it as a safe molecule. In summary, the experimental findings may establish the foundation for myricitrin and its analogues to be used therapeutically in CATD-mediated lung cancer prevention.


Subject(s)
Carcinoma, Squamous Cell , Lung Neoplasms , Myrica , Humans , Myrica/metabolism , Molecular Docking Simulation , Cathepsin D/chemistry , Cathepsin D/metabolism , Lung/metabolism
12.
ACS Appl Bio Mater ; 6(9): 3674-3682, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37603700

ABSTRACT

Due to the enhanced resistance of bacteria to antibiotics, researchers always try to find effective alternatives to treat drug-resistant bacterial infections. In this context, we have explored antimicrobial peptides (AMPs), which are a broad class of small peptide molecules, and investigated their efficacy as potent antibacterial and antibiofilm agents. AMPs can cause cell death either through disruption of the cell membrane or by inhibiting vital intracellular functions, by binding to RNA, DNA, or intracellular components upon transversion through the cell membrane. We attempted to find potent intracellular cationic AMPs that can demonstrate antibacterial activity through interaction with DNA. As a source of AMPs, we have utilized those that are secreted from the human microbiome with the anticipation that these will be non-toxic in nature. Out of the total 1087 AMPs, 27 were screened on the basis of amino acid length and efficacy to cross the cell membrane barrier. From the list of 27 peptides, 4 candidates were selected through the docking score of these peptides with the DNA binding domain of H2A proteins. Further, the molecular dynamics simulation analysis demonstrated that 2 AMPs, i.e., peptides 7 and 25, are having considerable membrane permeation and DNA binding ability. Further, the in vitro analysis indicated that both peptides 7 and 25 could exhibit potent antibacterial and antibiofilm activities. In order to further enhance the antibiofilm potency, the above AMPs were used as supplements to silver nanoclusters (Ag NCs) to get synergistic activity. The synergistic activity of Ag NCs was found to be significantly increased with both the above AMPs.


Subject(s)
Antimicrobial Peptides , Microbiota , Humans , Biological Transport , Anti-Bacterial Agents/pharmacology , Biofilms
13.
Curr Pharm Des ; 29(40): 3221-3239, 2023.
Article in English | MEDLINE | ID: mdl-37584354

ABSTRACT

Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.


Subject(s)
Biomimetics , Tissue Scaffolds , Humans , Wound Healing , Polymers/pharmacology , Hydrogels/pharmacology
14.
Front Public Health ; 11: 1059459, 2023.
Article in English | MEDLINE | ID: mdl-37275495

ABSTRACT

Background: Caregiving is a committed role that focuses on providing the required support and care to a care receiver who is either ill, disabled, or dependent to the extent that they are incapable of independent functioning. The topic of caregiving has been extensively studied worldwide, mainly focused on the negative aspects of caregiving, like caregiver stress, burden, role conflicts, and burnout among caregivers. However, limited efforts have been made to understand the positive aspects of caregiving among informal caregivers who spend most of their time in this unpaid role. The present study addresses this concern by exploring the positive aspects of caregiving among family caregivers of older persons in India. Methodology: This is a qualitative study, which was conducted, using the existential-phenomenological approach. In this study, a purposive sampling technique was used, and a total of a 100 family caregivers participated from four cities in India, namely Prayagraj, Pune, Visakhapatnam, and Guwahati. Twenty-five family caregivers between the age of 30-50 years participated from each of these four cities. The data was collected using six semi-structured interview questions on positive aspects of caregiving based on the lived experiences of caregivers. The interview schedule was developed based on the PERMA model and finalized after the pilot study. Each interview took 30-50 min and was recorded and transcribed. Results: The data was analyzed using thematic analysis. Some commonalities and differences were observed in the responses given by family caregivers from the four cities. Four major themes that emerged for the "Nature of positive caregiving" among participants from all four cities are "Caregiver's attitude," "Care and compassion," "Roles and responsibilities," and "Beliefs and values." Four significant themes for the "Factors contributing to positive caregiving" are "Meaningfulness in life," "Sense of belongingness," "Personal growth," and "Empathetic understanding." Conclusion: Based on the study's findings, it can be said that the themes were associated with the PERMA model. Positive caregiving is an important indicator of caregivers' and care receivers' well-being. The findings have implications for planning some action research, training, and counseling programs for promoting positive aspects of caregiving among informal caregivers.


Subject(s)
Caregivers , Stress, Psychological , Humans , Aged , Aged, 80 and over , Adult , Middle Aged , Caregivers/psychology , Pilot Projects , India , Stress, Psychological/psychology , Counseling
15.
Behav Sci (Basel) ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37232590

ABSTRACT

The coronavirus (COVID-19) pandemic is presently a global health issue that negatively affects the mental health and well-being of students globally. The latest investigations have recognized the role of mindfulness in individual subjective well-being. This study explores the mediating role of resilience in the overall relationship between mindfulness and subjective well-being among Indian university students during the COVID-19 pandemic. The data was collected between 10 August 2020 to 24 October 2020 via a self-administered questionnaire from 589 university students in India. Results revealed that resilience has a partial mediating role between mindfulness and subjective well-being. The results substantiate that resilience has an important role in mindfulness, exercising its advantageous effects on mental health of the students in higher education institutions. This research adds to the knowledge base of mindfulness and subjective well-being of university students, especially in contingent times. Lastly, the study contributes to the existing mindfulness theory.

16.
Int J Pharm ; 639: 122937, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37068717

ABSTRACT

Polysaccharide-based nanoparticles (NPs) such as pectin/ chitosan (PN/CN) had always been of greatest interest because of their excellent solubility, biocompatibility, and higher suitability for oral drug delivery. This study employed blending-crosslinking of polymers (PN&CN) followed by emulsification-solvent evaporation to prepare and compare two sets of PEGylated NPs to deliver phytic acid (IP6) to colon orally as it has potential to manage colon cancer but fails to reach colon when ingested in pure form. The first set was crosslinked with Glutaraldehyde (GE) (GE*PN-CN-NPs) while the second set was crosslinked with sodium tripolyphosphate (TPP) (TPP*PN-CN-NPs). IP6-loaded-GE/TPP*PN-CN-NPs were optimized using a central composite design. Developed TPP*PN-CN-NPs had a smaller size (210.6 ± 7.93 nm) than GE*PN-CN-NPs (557.2 ± 5.027 nm). Prepared NPs showed <12% IP6 release at pH 1.2 whereas >80% release was observed at pH 7.4. Further, NPs were explored for cytocompatibility in J774.2 cell lines, cytotoxicity, and cellular uptake in HT-29 and DLD-1 cell lines. While exhibiting substantial cytotoxicity and cellular uptake in HT-29 and DLD-1, the NPs were deemedsafe in J774.2. The PEGylated-TPP*PN-CN-NPs showed time-dependent uptake in J774.2 cell lines. Conclusively, the employed NP development method successfully delivered IP6 to colon and may also open avenues for the oral delivery of other drugs to colon.


Subject(s)
Chitosan , Nanoparticles , Phytic Acid , Pectins , Colon , Polyethylene Glycols , Drug Carriers
17.
Biochim Biophys Acta Gen Subj ; 1867(6): 130340, 2023 06.
Article in English | MEDLINE | ID: mdl-36868290

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) accounts for 20% of breast cancer that does not express HER2, progesterone and estrogen receptors. It is associated with a high mortality rate, morbidity, metastasis, recurrence, poor prognosis and resistance to chemotherapy. Lipoxygenase-5 (LOX-5), cyclooxygenase-2 (COX-2), cathepsin-D (CATD), ornithine decarboxylase (ODC) and dihydrofolate reductase (DHFR) are involved in breast cancer carcinogenesis; hence, there is a pressing need to identify novel chemicals that targets these enzymes. Narirutin, a flavanone glycoside abundantly present in citrus fruits, is reported to have immune-modulatory, anti-allergic and antioxidant potential. Still, the cancer chemopreventive mechanism against TNBC has not been explored. METHODS: In vitro experiments, enzyme activity, expression analysis, molecular docking and MD simulation were carried out. RESULTS: Narirutin suppressed the growth of MDA-MB-231 and MCF-7 in a dose-proportional manner. The pronounced effect with >50% inhibition was observed in SRB and MTT assays for MDAMB-231 cells. Unexpectedly, narirutin suppressed the proliferation of normal cells (24.51%) at 100 µM. Further, narirutin inhibits the activity of LOX-5 in cell-free (18.18 ± 3.93 µM) and cell-based (48.13 ± 7.04 µM) test systems while moderately affecting COX-2, CATD, ODC and DHFR activity. Moreover, narirutin revealed a down-regulation of LOX-5 expression with a fold change of 1.23. Besides, MD simulation experiments confirm that narirutin binding forms a stable complex with LOX-5 and improves the stability and compactness of LOX-5. In addition, the prediction analysis demonstrates that narirutin could not cross the blood-brain barrier and did not act as an inhibitor of different CYPs. CONCLUSIONS AND SIGNIFICANCE: Narirutin could be a potent cancer chemopreventive lead for TNBC, further paving the way for synthesizing novel analogues.


Subject(s)
Flavanones , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Lipoxygenase/therapeutic use , Cyclooxygenase 2 , Molecular Docking Simulation , Flavanones/pharmacology , Ornithine Decarboxylase
18.
J Microencapsul ; 40(4): 263-278, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36989347

ABSTRACT

The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimised through Box-Behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. The optimised NLCs exhibited a mean diameter of 180.2 ± 0.31 nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27 mm, decline in paw withdrawal timing, and improvements in walking behaviour were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.


Subject(s)
Arthritis, Rheumatoid , Berberine , Nanostructures , Animals , Drug Carriers/therapeutic use , Berberine/pharmacology , Berberine/therapeutic use , Drug Delivery Systems , Arthritis, Rheumatoid/drug therapy , Models, Animal , Lipids , Particle Size
19.
Appl Biochem Biotechnol ; 195(11): 6893-6912, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36951938

ABSTRACT

Differently expressed genes (DEGs) across cervical (CC), endometrial (EC), and vulvar carcinoma (VC) may serve as potential biomarkers for these progressive tumor conditions. In this study, DEGs of cervical (CC), endometrial (EC), and vulvar carcinoma (VC) were identified by microarray analysis. The interaction network between the identified 124 DEGs was constructed and analyzed to identify the hub genes and genes with high stress centrality. DEGs, namely, CDK1 and MMP9, were found to show highest degree and highest stress centrality respectively from the gene interaction network of 124 nodes and 1171 edges. DEG CDK1 is found to be overlapping in both cervical and endometrial carcinomic conditions while DEG MMP9 is found in vulvar carcinomic condition. Further, as it is studied that many phytochemicals play an important role as medicinal drugs, we have identified phytochemicals from few widely available medicinal plants and performed comprehensive computational study to identify a multi-targeted phytochemical against the identified DEGs, which are crucially responsible for the progression of these carcinomic conditions. Virtual screening of the phytochemicals against the target DEG protein structures with PDB IDs 4Y72 and 1GKC resulted in identifying the multi-targeted phytochemical against both the proteins. The molecular docking and dynamics simulation studies reveal that luteolin can act as a multi-targeted agent. Thus, the interactional and structural insights of luteolin toward the DEG proteins signify that it can be further explored as a multi-targeted agent against the cervical, endometrial, and vulvar carcinoma.


Subject(s)
Carcinoma , Plants, Medicinal , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Luteolin , Biomarkers , Phytochemicals/pharmacology , Carcinoma/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
20.
Med Oncol ; 40(3): 99, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36808013

ABSTRACT

Neolamarckia cadamba is an Indian traditional medicinal plant having various therapeutic potentials. In the present study, we did solvent-based extraction of Neolamarckia cadamba leaves. The extracted samples were screened against liver cancer cell line (HepG2) and bacteria (Escherichia coli). MTT cytotoxic assay was performed for in vitro analysis of extracted samples against the HepG2 cell lines and the normal human prostate PNT2 cell line. Chloroform extract of Neolamarckia cadamba leaves showed better activity with IC50 value 69 µg/ml. DH5α strain of Escherichia coli (E. coli) was cultured in Luria Bertani (LB) broth media and minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were calculated. Solvent extract chloroform showed better activity in MTT analysis and antibacterial screening and it was taken for characterization of phytocomposition by Fourier transform infrared (FTIR) and gas chromatography mass spectrometry (GC-MS). The identified phytoconstituents were docked with potential targets of liver cancer and E. coli. The phytochemical 1-(5-Hydroxy-6-hydroxymethyl-tetrahydropyran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione shows highest docking score against the targets PDGFRA (PDB ID: 6JOL) and Beta-ketoacyl synthase 1(PDB ID: 1FJ4) and their stability was further confirmed by molecular dynamics simulation studies.


Subject(s)
Plant Extracts , Rubiaceae , Male , Humans , Plant Extracts/pharmacology , Rubiaceae/chemistry , Escherichia coli , Chloroform , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...