Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Luminescence ; 38(9): 1668-1677, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37434298

ABSTRACT

Psoriasis is a noncontagious, long-lasting skin infection that affects many people around the world. Numerous therapeutic artificial treatments are available for the treatment of psoriasis, such as photodynamic therapy using broadband ultraviolet (UV) lamps, which have harmful effects on human skin. Similarly, the natural healing systems such as sunlight have a higher risk of sunburn and can cause dangerous forms of skin cancer. Significant light emission of a specific wavelength (in the UV range), and phosphor-based devices demonstrate the effectiveness of treating psoriasis without damaging the skin. Gd3+ -doped calcium magnesium silicate [Ca2 MgSi2 O7 :Gd3+ ,(CMS:Gd3+ )] phosphor is one of the ideal phosphors that emit specific narrow UV wavelengths for curing psoriasis and is in great demand in the field of dermatology. Photoluminescence analysis at room temperature (~25°C) shows that the synthesized CMS:Gd3+ phosphor emits narrowband UV-B light with a peak intensity at 314 nm. Comparative studies of the standard action spectrum of psoriasis with the emission spectrum of the CMS:Gd3+ phosphor show that the synthesized phosphor was the most suitable material for treating a variety of diseases, including psoriasis, vitiligo, type-1 diabetes, dental disease, sleep and mood disorders, and other skin diseases.


Subject(s)
Psoriasis , Rejuvenation , Humans , Psoriasis/radiotherapy , Ultraviolet Rays , Ions/chemistry
2.
ACS Appl Mater Interfaces ; 15(27): 33095-33108, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37384592

ABSTRACT

A triboelectric nanogenerator (TENG) is a potential technique that can convert waste kinetic energy to electrical energy by contact separation followed by electrostatic induction. Herein, a unique contact point modification technique has been reviewed carefully via the enlargement of the effective surface area of the tribo layer by using a simple and scalable printing method. In this study, the zinc sulfide (ZnS) nanostructure morphology has been introduced directly on an aluminum electrode (Al) as a tribo positive layer by a modified hydrothermal method and different line patterns directly printed on overhead projector (OHP) transparent sheets by a monochrome laser printer as a tribo negative layer to increase the effective contact area and work-function difference between two tribo layers. This dual parameter results in ∼11 times increment in the open-circuit output voltage (∼420 V) and ∼17 times increment in the short-circuit current density (∼83.33 mA m-2) compared to the normal one. Furthermore, with the proposed surface modification technique, an ultrahigh instantaneous output power density of ∼3.9 W m-2 at a load resistance of 2 MΩ was easily achieved. The direct energy conversion efficiency reached up to 66.67% at 2 MΩ load, which is very high compared to other traditional TENGs. Further, the fabricated TENG demonstrated efficacy in novel road safety sensing applications in hilly areas to control vehicle movement. Therefore, the current idea of surface engineering using a laser printer will be helpful for energy-harvesting enthusiasts to develop more efficient nanogenerators for higher energy conversions.

SELECTION OF CITATIONS
SEARCH DETAIL