Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nat Metab ; 5(9): 1578-1594, 2023 09.
Article in English | MEDLINE | ID: mdl-37697054

ABSTRACT

Lipids can be of endogenous or exogenous origin and affect diverse biological functions, including cell membrane maintenance, energy management and cellular signalling. Here, we report >800 lipid species, many of which are associated with health-to-disease transitions in diabetes, ageing and inflammation, as well as cytokine-lipidome networks. We performed comprehensive longitudinal lipidomic profiling and analysed >1,500 plasma samples from 112 participants followed for up to 9 years (average 3.2 years) to define the distinct physiological roles of complex lipid subclasses, including large and small triacylglycerols, ester- and ether-linked phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, cholesterol esters and ceramides. Our findings reveal dynamic changes in the plasma lipidome during respiratory viral infection, insulin resistance and ageing, suggesting that lipids may have roles in immune homoeostasis and inflammation regulation. Individuals with insulin resistance exhibit disturbed immune homoeostasis, altered associations between lipids and clinical markers, and accelerated changes in specific lipid subclasses during ageing. Our dataset based on longitudinal deep lipidome profiling offers insights into personalized ageing, metabolic health and inflammation, potentially guiding future monitoring and intervention strategies.


Subject(s)
Insulin Resistance , Humans , Lipidomics , Aging , Ceramides , Inflammation
2.
Nat Med ; 28(1): 175-184, 2022 01.
Article in English | MEDLINE | ID: mdl-34845389

ABSTRACT

Early detection of infectious diseases is crucial for reducing transmission and facilitating early intervention. In this study, we built a real-time smartwatch-based alerting system that detects aberrant physiological and activity signals (heart rates and steps) associated with the onset of early infection and implemented this system in a prospective study. In a cohort of 3,318 participants, of whom 84 were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this system generated alerts for pre-symptomatic and asymptomatic SARS-CoV-2 infection in 67 (80%) of the infected individuals. Pre-symptomatic signals were observed at a median of 3 days before symptom onset. Examination of detailed survey responses provided by the participants revealed that other respiratory infections as well as events not associated with infection, such as stress, alcohol consumption and travel, could also trigger alerts, albeit at a much lower mean frequency (1.15 alert days per person compared to 3.42 alert days per person for coronavirus disease 2019 cases). Thus, analysis of smartwatch signals by an online detection algorithm provides advance warning of SARS-CoV-2 infection in a high percentage of cases. This study shows that a real-time alerting system can be used for early detection of infection and other stressors and employed on an open-source platform that is scalable to millions of users.


Subject(s)
COVID-19/diagnosis , Carrier State/diagnosis , Exercise , Heart Rate/physiology , Wearable Electronic Devices , Accelerometry , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , Carrier State/physiopathology , Early Diagnosis , Female , Fitness Trackers , Humans , Male , Middle Aged , SARS-CoV-2 , Sleep , Young Adult
3.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502375

ABSTRACT

Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.


Subject(s)
Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Weightlessness/adverse effects , Animals , Caenorhabditis elegans , Circadian Rhythm/physiology , Databases, Genetic , Drosophila melanogaster , Extraterrestrial Environment , Gene Expression/genetics , Gene Expression Profiling/methods , Hindlimb Suspension , Mice , Models, Animal , Space Flight , Stress, Physiological/physiology , Transcriptome/genetics
4.
medRxiv ; 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34189532

ABSTRACT

Early detection of infectious disease is crucial for reducing transmission and facilitating early intervention. We built a real-time smartwatch-based alerting system for the detection of aberrant physiological and activity signals (e.g. resting heart rate, steps) associated with early infection onset at the individual level. Upon applying this system to a cohort of 3,246 participants, we found that alerts were generated for pre-symptomatic and asymptomatic COVID-19 infections in 78% of cases, and pre-symptomatic signals were observed a median of three days prior to symptom onset. Furthermore, by examining over 100,000 survey annotations, we found that other respiratory infections as well as events not associated with COVID-19 (e.g. stress, alcohol consumption, travel) could trigger alerts, albeit at a lower mean period (1.9 days) than those observed in the COVID-19 cases (4.3 days). Thus this system has potential both for advanced warning of COVID-19 as well as a general system for measuring health via detection of physiological shifts from personal baselines. The system is open-source and scalable to millions of users, offering a personal health monitoring system that can operate in real time on a global scale.

5.
iScience ; 24(4): 102361, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33870146

ABSTRACT

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

6.
iScience ; 23(12): 101844, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33376973

ABSTRACT

Liquid biopsies based on cell-free DNA (cfDNA) or exosomes provide a noninvasive approach to monitor human health and disease but have not been utilized for astronauts. Here, we profile cfDNA characteristics, including fragment size, cellular deconvolution, and nucleosome positioning, in an astronaut during a year-long mission on the International Space Station, compared to his identical twin on Earth and healthy donors. We observed a significant increase in the proportion of cell-free mitochondrial DNA (cf-mtDNA) inflight, and analysis of post-flight exosomes in plasma revealed a 30-fold increase in circulating exosomes and patient-specific protein cargo (including brain-derived peptides) after the year-long mission. This longitudinal analysis of astronaut cfDNA during spaceflight and the exosome profiles highlights their utility for astronaut health monitoring, as well as cf-mtDNA levels as a potential biomarker for physiological stress or immune system responses related to microgravity, radiation exposure, and the other unique environmental conditions of spaceflight.

7.
Nat Biomed Eng ; 4(12): 1208-1220, 2020 12.
Article in English | MEDLINE | ID: mdl-33208926

ABSTRACT

Consumer wearable devices that continuously measure vital signs have been used to monitor the onset of infectious disease. Here, we show that data from consumer smartwatches can be used for the pre-symptomatic detection of coronavirus disease 2019 (COVID-19). We analysed physiological and activity data from 32 individuals infected with COVID-19, identified from a cohort of nearly 5,300 participants, and found that 26 of them (81%) had alterations in their heart rate, number of daily steps or time asleep. Of the 25 cases of COVID-19 with detected physiological alterations for which we had symptom information, 22 were detected before (or at) symptom onset, with four cases detected at least nine days earlier. Using retrospective smartwatch data, we show that 63% of the COVID-19 cases could have been detected before symptom onset in real time via a two-tiered warning system based on the occurrence of extreme elevations in resting heart rate relative to the individual baseline. Our findings suggest that activity tracking and health monitoring via consumer wearable devices may be used for the large-scale, real-time detection of respiratory infections, often pre-symptomatically.


Subject(s)
COVID-19/diagnosis , COVID-19/prevention & control , Pandemics/prevention & control , Adult , Asymptomatic Diseases , Female , Humans , Male , Monitoring, Physiologic/methods , Retrospective Studies , SARS-CoV-2/pathogenicity , Wearable Electronic Devices
8.
Nat Commun ; 11(1): 4933, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004787

ABSTRACT

The influence of seasons on biological processes is poorly understood. In order to identify biological seasonal patterns based on diverse molecular data, rather than calendar dates, we performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we report more than 1000 seasonal variations in omics analytes and clinical measures. The different molecules group into two major seasonal patterns which correlate with peaks in late spring and late fall/early winter in California. The two patterns are enriched for molecules involved in human biological processes such as inflammation, immunity, cardiovascular health, as well as neurological and psychiatric conditions. Lastly, we identify molecules and microbes that demonstrate different seasonal patterns in insulin sensitive and insulin resistant individuals. The results of our study have important implications in healthcare and highlight the value of considering seasonality when assessing population wide health risk and management.


Subject(s)
Environmental Exposure , Insulin Resistance/physiology , Metabolic Networks and Pathways/physiology , Microbiota/physiology , Seasons , Adult , Aged , Blood Glucose/analysis , Blood Glucose/metabolism , California , Cluster Analysis , Female , Health Status , Humans , Insulin/metabolism , Longitudinal Studies , Male , Metabolomics , Middle Aged , RNA-Seq
9.
Nat Med ; 25(5): 792-804, 2019 05.
Article in English | MEDLINE | ID: mdl-31068711

ABSTRACT

Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways and affect behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus. The cohort underwent integrative personalized omics profiling from samples collected quarterly for up to 8 years (median, 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome and wearable monitoring. We discovered more than 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance by using omics measurements, illustrating their potential to replace burdensome tests. Finally, study participation led the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health.


Subject(s)
Big Data , Diabetes Mellitus, Type 2/etiology , Precision Medicine/statistics & numerical data , Adult , Aged , Cardiovascular Diseases/etiology , Cohort Studies , Exome , Female , Gastrointestinal Microbiome , Humans , Insulin Resistance , Longitudinal Studies , Male , Metabolome , Middle Aged , Models, Biological , Risk Factors , Transcriptome
10.
Nature ; 569(7758): 663-671, 2019 05.
Article in English | MEDLINE | ID: mdl-31142858

ABSTRACT

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Subject(s)
Biomarkers/metabolism , Computational Biology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Prediabetic State/microbiology , Proteome/metabolism , Transcriptome , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Biomarkers/analysis , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Healthy Volunteers , Humans , Inflammation/metabolism , Influenza Vaccines/immunology , Insulin/metabolism , Insulin Resistance , Longitudinal Studies , Male , Microbiota/physiology , Middle Aged , Prediabetic State/genetics , Prediabetic State/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Stress, Physiological , Vaccination/statistics & numerical data
11.
Science ; 364(6436)2019 04 12.
Article in English | MEDLINE | ID: mdl-30975860

ABSTRACT

To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.


Subject(s)
Adaptation, Physiological , Astronauts , Space Flight , Adaptive Immunity , Body Weight , Carotid Arteries/diagnostic imaging , Carotid Intima-Media Thickness , DNA Damage , DNA Methylation , Gastrointestinal Microbiome , Genomic Instability , Humans , Male , Telomere Homeostasis , Time Factors , United States , United States National Aeronautics and Space Administration
12.
Leuk Lymphoma ; 59(12): 2952-2962, 2018 12.
Article in English | MEDLINE | ID: mdl-29616851

ABSTRACT

To provide biologic insights into mechanisms underlying myelodysplastic syndromes (MDS) we evaluated the CD34+ marrow cells transcriptome using high-throughput RNA sequencing (RNA-Seq). We demonstrated significant differential gene expression profiles (GEPs) between MDS and normal and identified 41 disease classifier genes. Additionally, two main clusters of GEPs distinguished patients based on their major clinical features, particularly between those whose disease remained stable versus patients who transformed into acute myeloid leukemia within 12 months. The genes whose expression was associated with disease outcome were involved in functional pathways and biologic processes highly relevant for MDS. Combined with exomic analysis we identified differential isoform usage of genes in MDS mutational subgroups, with consequent dysregulation of distinct biologic functions. This combination of clinical, transcriptomic and exomic findings provides valuable understanding of mechanisms underlying MDS and its progression to a more aggressive stage and also facilitates prognostic characterization of MDS patients.


Subject(s)
Bone Marrow Cells/pathology , Exons/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Antigens, CD34/metabolism , Bone Marrow/pathology , Disease Progression , Female , Follow-Up Studies , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Prognosis , Exome Sequencing
13.
Cell Syst ; 6(2): 157-170.e8, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29361466

ABSTRACT

Advances in omics technologies now allow an unprecedented level of phenotyping for human diseases, including obesity, in which individual responses to excess weight are heterogeneous and unpredictable. To aid the development of better understanding of these phenotypes, we performed a controlled longitudinal weight perturbation study combining multiple omics strategies (genomics, transcriptomics, multiple proteomics assays, metabolomics, and microbiomics) during periods of weight gain and loss in humans. Results demonstrated that: (1) weight gain is associated with the activation of strong inflammatory and hypertrophic cardiomyopathy signatures in blood; (2) although weight loss reverses some changes, a number of signatures persist, indicative of long-term physiologic changes; (3) we observed omics signatures associated with insulin resistance that may serve as novel diagnostics; (4) specific biomolecules were highly individualized and stable in response to perturbations, potentially representing stable personalized markers. Most data are available open access and serve as a valuable resource for the community.


Subject(s)
Precision Medicine/methods , Weight Gain/genetics , Weight Loss/genetics , Adult , Biomarkers/blood , Genomics/methods , Humans , Insulin Resistance/genetics , Male , Metabolomics/methods , Obesity/genetics , Proteomics/methods
14.
Nucleic Acids Res ; 44(D1): D925-31, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26590403

ABSTRACT

Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.


Subject(s)
Databases, Genetic , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Animals , DNA Methylation , Epigenesis, Genetic , Gene Expression Profiling , Humans , Mice , Systems Biology
15.
Genom Data ; 4: 1-7, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25729644

ABSTRACT

During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets) and the consequences in cell physiology (e.g. distinctive categories of genes regulated at progressive stages of differentiation). The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.

16.
Genome Res ; 24(12): 1945-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319994

ABSTRACT

We used mouse ENCODE data along with complementary data from other laboratories to study the dynamics of occupancy and the role in gene regulation of the transcription factor TAL1, a critical regulator of hematopoiesis, at multiple stages of hematopoietic differentiation. We combined ChIP-seq and RNA-seq data in six mouse cell types representing a progression from multilineage precursors to differentiated erythroblasts and megakaryocytes. We found that sites of occupancy shift dramatically during commitment to the erythroid lineage, vary further during terminal maturation, and are strongly associated with changes in gene expression. In multilineage progenitors, the likely target genes are enriched for hematopoietic growth and functions associated with the mature cells of specific daughter lineages (such as megakaryocytes). In contrast, target genes in erythroblasts are specifically enriched for red cell functions. Furthermore, shifts in TAL1 occupancy during erythroid differentiation are associated with gene repression (dissociation) and induction (co-occupancy with GATA1). Based on both enrichment for transcription factor binding site motifs and co-occupancy determined by ChIP-seq, recruitment by GATA transcription factors appears to be a stronger determinant of TAL1 binding to chromatin than the canonical E-box binding site motif. Studies of additional proteins lead to the model that TAL1 regulates expression after being directed to a distinct subset of genomic binding sites in each cell type via its association with different complexes containing master regulators such as GATA2, ERG, and RUNX1 in multilineage cells and the lineage-specific master regulator GATA1 in erythroblasts.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , GATA Transcription Factors/metabolism , Gene Expression Regulation , Hematopoiesis , Proto-Oncogene Proteins/metabolism , Animals , Binding Sites , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Cluster Analysis , Computational Biology , Datasets as Topic , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Histones/metabolism , Mice , Models, Biological , Molecular Sequence Annotation , Nucleotide Motifs , Position-Specific Scoring Matrices , Protein Binding , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transcriptome
17.
Genome Res ; 24(12): 1932-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319996

ABSTRACT

Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-associated cis-regulatory modules (CRMs) in multipotential progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential progenitor via overlapping and divergent functions of shared hematopoietic transcription factors.


Subject(s)
Cell Differentiation , Cell Lineage , Erythropoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Thrombopoiesis/physiology , Transcription Factors/metabolism , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Chromatin/genetics , Chromatin/metabolism , Cluster Analysis , GATA1 Transcription Factor/metabolism , GATA2 Transcription Factor/metabolism , Gene Expression Profiling , Gene Silencing , Genome-Wide Association Study , Histones/metabolism , Mice , Models, Biological , Nucleotide Motifs , Protein Binding , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transcription Factors/genetics , Transcription, Genetic
18.
Cell Rep ; 8(2): 514-27, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25043190

ABSTRACT

Tumor suppressor p53 regulates transcription of stress-response genes. Many p53 targets remain undiscovered because of uncertainty as to where p53 binds in the genome and the fact that few genes reside near p53-bound recognition elements (REs). Using chromatin immunoprecipitation followed by exonuclease treatment (ChIP-exo), we associated p53 with 2,183 unsplit REs. REs were positionally constrained with other REs and other regulatory elements, which may reflect structurally organized p53 interactions. Surprisingly, stress resulted in increased occupancy of transcription factor IIB (TFIIB) and RNA polymerase (Pol) II near REs, which was reduced when p53 was present. A subset associated with antisense RNA near stress-response genes. The combination of high-confidence locations for p53/REs, TFIIB/Pol II, and their changes in response to stress allowed us to identify 151 high-confidence p53-regulated genes, substantially increasing the number of p53 targets. These genes composed a large portion of a predefined DNA-damage stress-response network. Thus, p53 plays a comprehensive role in regulating the stress-response network, including regulating noncoding transcription.


Subject(s)
Genome, Human , Response Elements , Stress, Physiological , Tumor Suppressor Protein p53/genetics , HCT116 Cells , Humans , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription Factor TFIIB/genetics , Transcription Factor TFIIB/metabolism , Tumor Suppressor Protein p53/metabolism
19.
Blood ; 123(12): 1927-37, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24497530

ABSTRACT

Mammals express thousands of long noncoding (lnc) RNAs, a few of which are known to function in tissue development. However, the entire repertoire of lncRNAs in most tissues and species is not defined. Indeed, most lncRNAs are not conserved, raising questions about function. We used RNA sequencing to identify 1109 polyadenylated lncRNAs expressed in erythroblasts, megakaryocytes, and megakaryocyte-erythroid precursors of mice, and 594 in erythroblasts of humans. More than half of these lncRNAs were unannotated, emphasizing the opportunity for new discovery through studies of specialized cell types. Analysis of the mouse erythro-megakaryocytic polyadenylated lncRNA transcriptome indicates that ~75% arise from promoters and 25% from enhancers, many of which are regulated by key transcription factors including GATA1 and TAL1. Erythroid lncRNA expression is largely conserved among 8 different mouse strains, yet only 15% of mouse lncRNAs are expressed in humans and vice versa, reflecting dramatic species-specificity. RNA interference assays of 21 abundant erythroid-specific murine lncRNAs in primary mouse erythroid precursors identified 7 whose knockdown inhibited terminal erythroid maturation. At least 6 of these 7 functional lncRNAs have no detectable expression in human erythroblasts, suggesting that lack of conservation between mammalian species does not predict lack of function.


Subject(s)
Erythropoiesis/genetics , RNA, Long Noncoding/genetics , Thrombopoiesis/genetics , Animals , Cell Lineage/genetics , Conserved Sequence , Enhancer Elements, Genetic , Erythroblasts/metabolism , Humans , Megakaryocyte-Erythroid Progenitor Cells/metabolism , Megakaryocytes/metabolism , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , RNA Interference , RNA, Long Noncoding/metabolism , Species Specificity , Transcription Factors/metabolism
20.
J Biol Chem ; 288(12): 8433-8444, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23341446

ABSTRACT

Identification of cell type-specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. Using chromatin immunoprecipitation followed by massively parallel sequencing, genome-wide maps of candidate enhancers were constructed for p300 and four transcription factors, GATA1, NF-E2, KLF1, and SCL, using primary human erythroid cells. These data were combined with gene expression analyses, and candidate enhancers were identified. Consistent with their predicted function as candidate enhancers, there was statistically significant enrichment of p300 and combinations of co-localizing erythroid transcription factors within 1-50 kb of the transcriptional start site (TSS) of genes highly expressed in erythroid cells. Candidate enhancers were also enriched near genes with known erythroid cell function or phenotype. Candidate enhancers exhibited moderate conservation with mouse and minimal conservation with nonplacental vertebrates. Candidate enhancers were mapped to a set of erythroid-associated, biologically relevant, SNPs from the genome-wide association studies (GWAS) catalogue of NHGRI, National Institutes of Health. Fourteen candidate enhancers, representing 10 genetic loci, mapped to sites associated with biologically relevant erythroid traits. Fragments from these loci directed statistically significant expression in reporter gene assays. Identification of enhancers in human erythroid cells will allow a better understanding of erythroid cell development, differentiation, structure, and function and provide insights into inherited and acquired hematologic disease.


Subject(s)
Enhancer Elements, Genetic , Erythroid Cells/metabolism , Gene Expression Regulation , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Conserved Sequence , E1A-Associated p300 Protein/metabolism , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/physiology , Genes, Reporter , High-Throughput Nucleotide Sequencing , Humans , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/physiology , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Molecular Sequence Annotation , NF-E2 Transcription Factor, p45 Subunit/metabolism , NF-E2 Transcription Factor, p45 Subunit/physiology , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...