Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 217, 2019.
Article in English | MEDLINE | ID: mdl-30941150

ABSTRACT

Among abiotic stresses, salt stress adversely affects growth and development in rice. Contrasting salt tolerant (CSR27), and salt sensitive (MI48) rice varieties provided information on an array of genes that may contribute for salt tolerance of rice. Earlier studies on transcriptome and proteome profiling led to the identification of salt stress-induced serine hydroxymethyltransferase-3 (SHMT3) gene. In the present study, the SHMT3 gene was isolated from salt-tolerant (CSR27) rice. OsSHMT3 exhibited salinity-stress induced accentuated and differential expression levels in different tissues of rice. OsSHMT3 was overexpressed in Escherichia coli and assayed for enzymatic activity and modeling protein structure. Further, Arabidopsis transgenic plants overexpressing OsSHMT3 exhibited tolerance toward salt stress. Comparative analyses of OsSHMT3 vis a vis wild type by ionomic, transcriptomic, and metabolic profiling, protein expression and analysis of various traits revealed a pivotal role of OsSHMT3 in conferring tolerance toward salt stress. The gene can further be used in developing gene-based markers for salt stress to be employed in marker assisted breeding programs. HIGHLIGHTS: - The study provides information on mechanistic details of serine hydroxymethyl transferase gene for its salt tolerance in rice.

2.
Bioinformation ; 14(3): 123-131, 2018.
Article in English | MEDLINE | ID: mdl-29785071

ABSTRACT

Rice, a staple food crop, is often subjected to drought and salinity stresses thereby limiting its yield potential. Since there is a cross talk between these abiotic stresses, identification of common and/or overlapping regulatory elements is pivotal for generating rice cultivars that showed tolerance towards them. Analysis of the gene interaction network (GIN) facilitates identifying the role of individual genes and their interactions with others that constitute important molecular determinants in sensing and signaling cascade governing drought and/or salinity stresses. Identification of the various cis-regulatory elements of the genes constituting GIN is equally important. Here, in this study graphical Gaussian model (GGM) was used for generating GIN for an array of genes that were differentially regulated during salinity and/or drought stresses to contrasting rice cultivars (salt-tolerant [CSR11], salt-sensitive [VSR156], drought-tolerant [Vandana], drought-sensitive [IR64]). Whole genome transcriptom profiling by using microarray were employed in this study. Markov Chain completed co-expression analyses of differentially expressed genes using Dynamic Bayesian Network, Probabilistic Boolean Network and Steady State Analysis. A compact GIN was identified for commonly co-expressed genes during salinity and drought stresses with three major hubs constituted by Myb2 transcription factor (TF), phosphoglycerate kinase and heat shock protein (Hsp). The analysis suggested a pivotal role of these genes in salinity and/or drought stress responses. Further, analysis of cis-regulatory elements (CREs) of commonly differentially expressed genes during salinity and drought stresses revealed the presence of 20 different motifs.

3.
J Agric Food Chem ; 65(7): 1395-1400, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28114755

ABSTRACT

Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.


Subject(s)
Bacterial Proteins/genetics , Cajanus/chemistry , Endotoxins/genetics , Hemolysin Proteins/genetics , Plant Proteins/chemistry , Plants, Genetically Modified/chemistry , Seeds/chemistry , Amino Acids/analysis , Amino Acids/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Cajanus/genetics , Cajanus/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Minerals/analysis , Minerals/metabolism , Nutritive Value , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Proteomics , Seeds/genetics , Seeds/metabolism
4.
Protoplasma ; 254(1): 303-313, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26837223

ABSTRACT

Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.74 and 8.61 ds/m) and growth, photochemical reactions of photosynthesis, ion accumulation, and changes in cellular proteome were studied. Maximum dry weight was accumulated in control and untreated plant while a substantial decrease in dry weight was observed in the plants exposed to salinity. Exposure of the organism to different concentrations of salt in hydroponic conditions resulted in differential level of Na+ and K+ ion accumulation. Comparative analysis of salinity-induced proteome changes in A. microphylla revealed 58 salt responsive proteins which were differentially expressed during the salt exposure. Moreover, 42 % spots among differentially expressed proteins were involved in different signaling events. The identified proteins are involved in photosynthesis, energy metabolism, amino acid biosynthesis, protein synthesis, and defense. Downregulation of these key metabolic proteins appears to inhibit the growth of A. microphylla in response to salinity. Altogether, the study revealed that in Azolla, increased salinity primarily affected signaling and photosynthesis that in turn leads to reduced biomass.


Subject(s)
Aquatic Organisms/growth & development , Aquatic Organisms/physiology , Photosynthesis , Proteomics/methods , Salinity , Signal Transduction , Tracheophyta/growth & development , Tracheophyta/physiology , Biomass , Electron Transport/drug effects , Electrophoresis, Gel, Two-Dimensional , Photosynthesis/drug effects , Plant Proteins/metabolism , Potassium/metabolism , Proteome/metabolism , Signal Transduction/drug effects , Sodium/metabolism , Sodium Chloride/pharmacology , Tracheophyta/drug effects
5.
Plant Cell Rep ; 35(6): 1273-86, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26993328

ABSTRACT

KEY MESSAGE: Differentially expressed antioxidant enzymes, amino acids and proteins in contrasting rice genotypes, and co-location of their genes in the QTLs mapped using bi-parental population, indicated their role in salt tolerance. Soil salinity is a major environmental constraint limiting rice productivity. Salt-tolerant 'CSR27', salt-sensitive 'MI48'and their extreme tolerant and sensitive recombinant inbred line (RIL) progenies were used for the elucidation of salt stress tolerance metabolic pathways. Salt stress-mediated biochemical and molecular changes were analyzed in the two parents along with bulked-tolerant (BT) and bulked-sensitive (BS) extreme RILs. The tolerant parent and BT RILs suffered much lower reduction in the chlorophyll as compared to their sensitive counterparts. Activities of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) and non-enzymatic antioxidant ascorbic acid were much higher in salt-stressed CSR27 and BT RILs than MI48 and BS RILs. Further, the tolerant lines showed significant enhancement in the levels of amino acids methionine and proline in response to salt stress in comparison to the sensitive lines. Similarly, the tolerant genotypes showed minimal reduction in cysteine content whereas sensitive genotypes showed a sharp reduction. Real time PCR analysis confirmed the induction of methionine biosynthetic pathway (MBP) enzymes cystathionine-ß synthase (CbS), S-adenosyl methionine synthase (SAMS), S-adenosyl methionine decarboxylase (SAMDC) and serine hydroxymethyl transferase (SHMT) genes in tolerant lines, suggesting potential role of the MBP in conferring salt tolerance in rice variety CSR27. Proteome profiling also confirmed higher expression of SOD, POD and plastidic CbS and other proteins in the tolerant lines, whose genes were co-located in the QTL intervals for salt tolerance mapped in the RIL population. The study signifies integrated biochemical-molecular approach for identifying salt tolerance genes for genetic improvement for stress tolerant rice varieties.


Subject(s)
Oryza/genetics , Salt Tolerance/genetics , Amino Acids/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genotype , Lipid Peroxidation , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Oryza/physiology , Photosynthesis , Quantitative Trait Loci/genetics , Salt Tolerance/physiology
6.
Mol Biol Rep ; 42(11): 1545-58, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26323334

ABSTRACT

The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.


Subject(s)
Heat-Shock Response , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteome , Electrophoresis, Gel, Two-Dimensional , Oryza/physiology , Plant Leaves/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Mol Biol Rep ; 42(1): 43-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25218843

ABSTRACT

Indulgence of heat defense mechanism is crucial to allay undesirable effects by developing significant heat tolerant plants. Translation of heat stress related genes into proteins is a key tolerance strategy tailored by plants. In order to understand the possible mechanisms of heat tolerance in wheat at proteomic level, two wheat genotypes (WH 730-heat tolerant; Raj 4014-heat intolerant) along with their 10 extreme recombinant inbred lines (RILs) were exposed to heat stress (35 °C for 6 h) to identify important stress related proteins. 2-DE coupled with MALDI TOF/TOF of wheat seedlings revealed 14 differentially regulated protein spots. Compared to Raj 4014, 3 proteins viz. Rubisco activase A, Con A and PEP carboxylase 1 were differentially regulated only in WH 730 implying their practical role in heat tolerance. Above and beyond, increased expression of cytochrome b6f complex and catalase in tolerant RIL population signifies their role in accelerated electron flow during heat stress to cope up with the stress. Our results suggests that, compared to intolerant parent and RILs, tolerant parent and RILs might be actively modulating protein involved in photosynthesis, signal transduction and defense which signifies the activation of adaptation mechanism under heat stress.


Subject(s)
Adaptation, Physiological , Heat-Shock Response , Plant Proteins/metabolism , Seedlings/metabolism , Triticum/metabolism , Electrophoresis, Gel, Two-Dimensional , Genotype , Inbreeding , Phenotype , Proteome/metabolism , Triticum/genetics
8.
Biol Trace Elem Res ; 149(1): 86-96, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22528776

ABSTRACT

Enhanced level of UV-B radiation and heavy metals in irrigated soils due to anthropogenic activities are deteriorating the environmental conditions necessary for growth and development of plants. The present study was undertaken to study the individual and interactive effects of heavy metal nickel (NiCl(2)·6H(2)O; 0.01, 0.1, 1.0 mM) and UV-B exposure (0.4 W m(-2); 45 min corresponds to 1.08 KJ m(-2)) on growth performance and photosynthetic activity of pea (Pisum sativum L.) seedlings. Ni treatment at high doses (0.1 and 1.0 mM Ni) and UV-B alone reduced chlorophyll content and photosynthetic activity (oxygen yield, carbon fixation, photorespiration, and PSI, PSII, and whole chain electron transport activities), and declining trends continued with combined doses. In contrast to this, Ni at 0.01 mM appeared to be stimulatory for photosynthetic pigments and photosynthetic activity, thereby enhanced biomass was observed at this concentration. However, combined dose (UV-B + 0.01 mM Ni) caused inhibitory effects. Carotenoids showed different responses to each stress. Nickel at high doses strongly inhibited PSII activity and the inhibition was further intensified when chloroplasts were simultaneously exposed to UV-B radiation. PSI activity appeared to be more resistant to each stress. High doses of Ni (0.1 and 1.0 mM) and UV-B alone interrupted electron flow at the oxygen evolving complex. Similar damaging effects were caused by 0.01 and 0.1 mM Ni together with UV-B, but the damage extended to PSII reaction center in case of 1.0 mM Ni in combination with UV-B. In conclusion, the results demonstrate that low dose of Ni stimulated the growth performance of pea seedlings in contrast to its inhibitory role at high doses. However, UV-B alone and together with low as well as high doses of Ni proved to be toxic for P. sativum L.


Subject(s)
Nickel/pharmacology , Photosynthesis , Pisum sativum/drug effects , Pisum sativum/radiation effects , Seedlings/growth & development , Stress, Physiological , Ultraviolet Rays , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Electron Transport , Nickel/metabolism , Oxygen/metabolism , Pisum sativum/growth & development , Pisum sativum/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/radiation effects , Seedlings/drug effects , Seedlings/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...