Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1198023, 2023.
Article in English | MEDLINE | ID: mdl-37469543

ABSTRACT

Introduction: Millets are nutritionally superior and climate-resilient short-duration crops and hold a prominent place in cropping sequences around the world. They have immense potential to grow in a marginal environment due to diverse adaptive mechanisms. Methods: An experiment was conducted in an organic production system in the North Eastern Himalayan foothills of India for 3 consecutive years by evaluating high-yielding varieties (HYVs) of different millets, viz., finger millet, foxtail millet, little millet, barnyard millet, proso millet, and browntop millet, along with local landraces of finger millets (Sikkim-1 and Sikkim-2; Nagaland-1 and Nagaland-2) to identify stable, high-yielding, and nutritionally superior genotypes suited for the region. Results: Among the various millets, finger millet, followed by little millet and foxtail millet, proved their superiority in terms of productivity (ranging between 1.16 and 1.43 Mg ha-1) compared to other millets. Among different varieties of finger millets, cv. VL Mandua 352 recorded the highest average grain yield (1.43 Mg ha-1) followed by local landraces, Nagaland-2 (1.31 Mg ha-1) and Sikkim-1 (1.25 Mg ha-1). Root traits such as total root length, root volume, average diameter of roots, and root surface area were significantly higher in finger millet landraces Nagaland-1, Nagaland-2, and Sikkim-1 compared to the rest of the millet genotypes. The different millets were found to be rich sources of protein as recorded in foxtail millet cv. SiA 3088 (12.3%), proso millet cv. TNAU 145 (11.5%), and finger millet landraces, Sikkim-1 and Nagaland-2 (8.7% each). Finger millet landrace Sikkim-2 recorded the highest omega-6 content (1.16%), followed by barnyard millet cv. VL 207 (1.09%). Barnyard millet cv. VL 207 recorded the highest polyunsaturated fatty acid (PUFA) content (1.23%), followed by foxtail millet cv. SiA 3088 (1.09%). The local finger millet landraces Sikkim-1 and Sikkim-2 recorded the highest levels of histidine (0.41%) and tryptophan (0.12%), respectively. Sikkim-1 and Nagaland-2 recorded the highest level of thiamine (0.32%) compared to the HYVs. Conclusion: These findings indicate that finger millet has great potential in the organic production system of the North Eastern Himalayan Region (NEHR) of India, and apart from HYVs like VL Mandua 352, local landraces, viz., Nagaland-2 and Sikkim-1, should also be promoted for ensuring food and nutritional security in this fragile ecosystem.

2.
Front Microbiol ; 11: 595845, 2020.
Article in English | MEDLINE | ID: mdl-33391212

ABSTRACT

Fusarium wilt in bananas is one of the most devastating diseases that poses a serious threat to the banana industry globally. With no effective control measures available to date, biological control has been explored to restrict the spread and manage the outbreak. We studied the effective biological control potential of different Trichoderma spp. in the management of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Expression of the defense related genes and metabolites in banana plants inoculated with Foc TR4 and treated with effective Trichoderma sp interactions were also studied. The in vitro growth inhibition of Foc TR4 by Trichoderma reesei isolate CSR-T-3 was 85.19% indicating a higher antagonistic potential than other Trichoderma isolates used in the study. Further, in in vivo assays, the banana plants treated with the isolate CSR-T-3 T. reesei had a significant reduction in the disease severity index (0.75) and also had increased phenological indices with respect to Foc TR4 treated plants. Enhanced activity of defense enzymes, such as ß-1, 3-glucanase, peroxidase, chitinase, polyphenol oxidase, and phenylalanine ammonia lyase with higher phenol contents were found in the Trichoderma isolate CSR-T-3 treated banana plants challenge-inoculated with Foc TR4. Fusarium toxins, such as fusaristatin A, fusarin C, chlamydosporal, and beauveric acid were identified by LC-MS in Foc TR4-infected banana plants while high intensity production of antifungal compounds, such as ß-caryophyllene, catechin-o-gallate, soyasapogenol rhamnosyl glucoronide, peptaibols, fenigycin, iturin C19, anthocyanin, and gallocatechin-o-gallate were detected in T. reesei isolate CSR-T-3 treated plants previously inoculated with Foc TR4. Gene expression analysis indicated the upregulation of TrCBH1/TrCBH2, TrXYL1, TrEGL1, TrTMK1, TrTGA1, and TrVEL1 genes in CSR-T-3 treatment. LC-MS and gene expression analysis could ascertain the upregulation of genes involved in mycoparasitism and the signal transduction pathway leading to secondary metabolite production under CSR-T-3 treatment. The plants in the field study showed a reduced disease severity index (1.14) with high phenological growth and yield indices when treated with T. reesei isolate CSR-T-3 formulation. We report here an effective biocontrol-based management technological transformation from lab to the field for successful control of Fusarium wilt disease caused by Foc TR4 in bananas.

3.
J Contemp Dent Pract ; 17(5): 399-407, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27443367

ABSTRACT

AIMS: The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. OBJECTIVES: To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. MATERIALS AND METHODS: Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). RESULTS: The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no significant difference when compared with Clearfil SE Bond adhesive in dry enamel. Single Bond 2 adhesive showed no significant difference in microshear bond strength as compared with self-etching adhesive systems (Clearfil SE Bond and Xeno-V), when the enamel was kept wet. CONCLUSION: From the findings of the results, it was concluded that self-etching adhesives were not negatively affected by the presence of water on the enamel surface. CLINICAL SIGNIFICANCE: The all-in-one adhesive showed different behavior depending on whether the enamel surface was dry or wet. So the enamel surface should not be desiccated, when self-etching adhesives are used.


Subject(s)
Composite Resins , Dentin-Bonding Agents , Acid Etching, Dental , Adhesives , Bisphenol A-Glycidyl Methacrylate , Composite Resins/chemistry , Dental Bonding , Dental Cements , Dental Enamel , Dental Stress Analysis , Dentin , Dentin-Bonding Agents/chemistry , Resin Cements
SELECTION OF CITATIONS
SEARCH DETAIL
...