Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 46: 409-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25492005

ABSTRACT

A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500-1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides.


Subject(s)
Carbon , Graphite , Nanostructures , Osseointegration , Prostheses and Implants , Titanium , Biocompatible Materials , Cells, Cultured , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Surface Properties
2.
J Nanosci Nanotechnol ; 11(10): 8754-62, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22400255

ABSTRACT

Titanium is the most widely used material in orthopaedic and dental implantoprosthesis due to its superior physical properties and enhanced biocompatibility due to the spontaneous formation of a passivating layer of titanium oxides which, however, does not form good chemical bonds with bone and tends to brake exposing bulk titanium to harsh body fluids releasing titanium particles which may prime an inflammation response and a fibrotic tissue production. In order to avoid these possible problems and to enhance the biocompatibility of titanium implants, modifications of titanium surfaces by many different materials as hydroxyapatite, titanium nitride, titanium oxide and titanium carbide have been proposed. The latter is shown to be an efficient protection for the titanium implant in the harsh conditions of biological tissues and, compared to untreated titanium, acting like an osteoblast stimulation factor increasing in vitro production of proteins involved in osteogenesis. These results were confirmed by in vivo experiments in rabbits: implants covered by the titanium carbide (TiC) layer were faster and better osseointegrated than untreated titanium implants. The TiC layer was deposited by a Pulsed Laser Deposition (PLD) device which allowed only one deposition per cycle, shown to be unsuitable for industrial applications. Therefore the main objective of the present work was to replace PLD process with an Ion Plating Plasma Assisted (IPPA) deposition process, which is suitable for industrial upgrading. By this technique, nanostructured TiOx-TiCy-C has been deposited on titanium after sandblasting with 120 micron zirconia spheres. XPS analyses revealed the presence of about 33% carbon (50% of which is present as free carbon), 39% oxygen and 28% titanium (37% of which is bound to carbon to form TiC and 63% is bound to oxygen to form non stoichiometric oxides). Surface mechanical response of as-deposited coatings has been performed by nanoindentation techniques. Focused Ion Beam micrographs showed bigger differences on the obtained nanostructure compared to the PLD coating structure; in vitro tests confirm for IPPA produced coatings an improvement in stimulating osteoblasts to produce mRNA's of proteins involved in the ossification process, this latter case they resulted to be faster and more efficient. The proposed treatement is expected to improve the good results obtained by PLD, in vivo as well.


Subject(s)
Bone and Bones/cytology , Coated Materials, Biocompatible/chemistry , Titanium/chemistry , Animals , Bone and Bones/drug effects , Bone and Bones/metabolism , Cell Line , Coated Materials, Biocompatible/pharmacology , Durapatite/chemistry , Hardness , Humans , Ions/metabolism , Lasers , Microspheres , Nanostructures/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Prostheses and Implants , Rabbits , Surface Properties , Titanium/metabolism , Titanium/pharmacology , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...