Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharm Dev Technol ; 29(5): 395-414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618690

ABSTRACT

The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.


Subject(s)
Excipients , Technology, Pharmaceutical , Excipients/chemistry , Technology, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Industry/methods
2.
J Pharm Sci ; 112(7): 1794-1800, 2023 07.
Article in English | MEDLINE | ID: mdl-37023856

ABSTRACT

N-nitrosamines are likely human carcinogens. After N-nitrosamine contaminants were detected in pharmaceutical products in 2018, regulatory authorities set a framework for the risk assessment, testing and mitigation of N-nitrosamines in drug products. One strategy to inhibit the formation of N-nitrosamines during the manufacture and storage of drug products involves the incorporation of nitrite scavengers in the formulation. Diverse molecules have been tested in screening studies including the antioxidant vitamins ascorbic acid and α-tocopherol, amino acids, and other antioxidants used in foods or drugs, for inclusion into drug products to mitigate N-nitrosamine formation. This review article outlines key considerations for the inclusion of nitrite scavengers in oral drug product formulations.


Subject(s)
Nitrosamines , Humans , Nitrosamines/chemistry , Nitrosamines/metabolism , Nitrites , Antioxidants/pharmacology , Ascorbic Acid , Pharmaceutical Preparations
3.
Pharm Res ; 31(1): 194-203, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23921490

ABSTRACT

PURPOSE: To study the biorelevant drug release from novel starch-based polyvinyl alcohol capsules (S-PVA-C). The effect of the shell material is studied by considering microstructural formulation changes during hydration. METHODS: Two different self-emulsifying systems containing either fenofibrate or probucol were filled in S-PVA-C, as well as capsules of gelatin (SGC) and starch (VegaGels®). Release analysis employed a BioDis® apparatus, while disintegration was studied by texture analysis. For microstructural analysis we used small angle x-ray scattering (SAXS). RESULTS: S-PVA-C opened only partially in biorelevant media compared to completely opened SGC and VegaGels®. In case of the fenofibrate formulation, this opening mechanism caused only a short lag time, while the probucol formulation in S-PVA-C resulted in a sustained release. The latter formulation demonstrated much higher viscosity upon hydration compared to the fenofibrate system. Such a rheological effect on drug release was barely noted for SGC or VegaGels® and SAXS revealed differences in the hydrated microstructure. CONCLUSIONS: Even though S-PVA-C are highly attractive for encapsulation of rather hydrophilic formulations, some care is needed regarding an immediate release form. The type of formulation hydration must be considered for adequate selection of the capsule material.


Subject(s)
Capsules/chemistry , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Emulsions/chemistry , Fenofibrate/chemistry , Gelatin/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Polyvinyl Alcohol/chemistry , Probucol/chemistry , Scattering, Small Angle , Starch/chemistry , X-Ray Diffraction/methods
4.
J Pharm Sci ; 101(12): 4516-28, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22949383

ABSTRACT

For decades, gelatin has been used in the rotary die process as a shell-forming material of soft capsules because of its unique physicochemical properties. However, with respect to the encapsulation of comparatively hydrophilic lipid-based formulations, gelatin has one considerable drawback: Immediately after production, the capsule shell contains a large amount of water (up to 35%). There is the potential for water to migrate from the capsule shell into the formulation, which will lead to a decrease in drug solubility and, in turn, the potential for drug crystallization. The present study introduces a novel capsule material that was obtained from extrusion. The starch-based polyvinyl alcohol thermoplastic capsules (S-PVA-C) mainly comprised a blend of starch and PVA. Gelatin and the novel material were used to encapsulate a hydrophilic lipid-based system of fenofibrate. Considerable water migration was observed from the soft gelatin shell to the hydrophilic formulation during drying and drug crystallization resulted in soft gelatin capsules. In contrast, S-PVA-C displayed no substantial water exchange or drug crystallization upon storage. The thermoplastic capsule material further exhibited more surface roughness and higher resistance to mechanical deformation compared with gelatin. In conclusion, S-PVA-C provided a robust drug product following encapsulation of a rather hydrophilic lipid-based formulation.


Subject(s)
Capsules/chemistry , Polyvinyl Alcohol/chemistry , Starch/chemistry , Fenofibrate/administration & dosage , Gelatin/chemistry , Hydrophobic and Hydrophilic Interactions , Hypolipidemic Agents/administration & dosage , Lipids/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...