Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 146(12): 125102, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388168

ABSTRACT

We have used high-resolution quasielastic neutron scattering (QENS) to investigate the dynamics of water molecules (time scale of motion ∼10-11-10-9 s) in proximity to single-supported bilayers of the zwitterioniclipid DMPC (1,2-dimyristoyl-sn-glycero-3-phosphorylcholine) and the anionic lipid DMPG (1,2-dimyristoyl-sn-glycero-3-phosphoglycerol) in the temperature range 160-295 K. For both membranes, the temperature dependence of the intensity of neutronsscattered elastically and incoherently from these samples indicates a series of freezing/melting transitions of the membrane-associated water, which have not been observed in previous studies of multilayer membranes. We interpret these successive phase transitions as evidence of different types of water that are common to the two membranes and which are defined by their local environment: bulk-like water located furthest from the membrane and two types of confined water in closer proximity to the lipids. Specifically, we propose a water type termed "confined 2" located within and just above the lipid head groups of the membrane and confined 1 water that lies between the bulk-like and confined 2 water. Confined 1 water is only present at temperatures below the freezing point of bulk-like water. We then go on to determine the temperature dependence of the translational diffusion coefficient of the water associated with single-supported DMPG membranes containing two different amounts of water as we have previously done for DMPC. To our knowledge, there have been no previous studies comparing the dynamics of water in proximity to zwitterionic and anionic membranes. Our analysis of the water dynamics of the DMPG and DMPC membranes supports the classification of water types that we have inferred from their freezing/melting behavior. However, just as we observe large differences in the freezing/melting behavior between these model membranes for the same water type, our measurements demonstrate variation between these membranes in the dynamics of their associated water over a wide temperature range. In particular, there are differences in the diffusive motion of water closest to the lipid head groups. Previously, QENS spectra of the DMPC membranes have revealed the motion of water bound to the lipid head groups. For the DMPG membrane, we have found some evidence of such bound water molecules; but the signal is too weak for a quantitative analysis. However, we observe confined 2 water in the DMPG membrane to undergo slow translational diffusion in the head group region, which was unobserved for DMPC. The weak temperature dependence of its translational diffusion coefficient allows extrapolation to physiological temperatures for comparison with molecular dynamics simulations.

2.
J Chem Phys ; 146(2): 024502, 2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28088154

ABSTRACT

Uranyl fluoride (UO2F2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R3¯m symmetry. The formally closed-shell electron structure of anhydrous UO2F2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically averaged Hubbard +U correction on vibrational frequencies, electronic structure, and geometry of anhydrous UO2F2. A particular choice of Ueff=5.5 eV yields the correct U-Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO2F2 system, with the symmetric stretching vibration shifted approximately 47 cm-1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion-hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.

3.
J Chem Phys ; 144(14): 144904, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27083749

ABSTRACT

Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10(8)-10(9) V m(-1), which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10(8) V m(-1)) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10(8) V m(-1)) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes but comparable to the number inferred for 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) membranes. Some of the properties of the DMPG membrane are compared with those of the neutral zwitterionic DMPC bilayer membrane at 303 K and 1 atm, which is the same reduced temperature with respect to the gel-to-fluid transition temperature as 310 K is for the DMPG bilayer membrane.


Subject(s)
Lipid Bilayers/chemistry , Lipids/chemistry , Molecular Dynamics Simulation , Phosphatidylglycerols/chemistry , Water/chemistry , Anions/chemistry , Molecular Structure
4.
J Chem Phys ; 137(20): 204910, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23206034

ABSTRACT

Molecular dynamics simulations have been used to determine the diffusion of water molecules as a function of their position in a fully hydrated freestanding 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) bilayer membrane at 303 K and 1 atm. The diffusion rate of water in a ∼10 Šthick layer just outside the membrane surface is reduced on average by a factor of ∼2 relative to bulk. For water molecules penetrating deeper into the membrane, there is an increasing reduction in the average diffusion rate with up to one order of magnitude decrease for those deepest in the membrane. A comparison with the diffusion rate of selected atoms in the lipid molecules shows that ∼6 water molecules per lipid molecule move on the same time scale as the lipids and may therefore be considered to be tightly bound to them. The quasielastic neutron scattering functions for water and selected atoms in the lipid molecule have been simulated and compared to observed quasielastic neutron scattering spectra from single-supported bilayer DMPC membranes.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Water/chemistry , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL