Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(30): 5432-5447, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37277178

ABSTRACT

The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.


Subject(s)
Isoenzymes , Signal Transduction , Animals , Mice , Signal Transduction/physiology , Synapses/physiology , Neuronal Plasticity/physiology , Protein Kinase C/metabolism
2.
Nat Neurosci ; 21(8): 1027-1037, 2018 08.
Article in English | MEDLINE | ID: mdl-30013171

ABSTRACT

The protein kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca2+-dependent PKC isozymes are activated in dendritic spines during plasticity and, if so, how this synaptic activity is encoded by PKC. Here, using newly developed, isozyme-specific sensors, we demonstrate that classical isozymes are activated to varying degrees and with distinct kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity depends on a PDZ-binding motif present only in PKCα. The activation of PKCα during plasticity requires both NMDA receptor Ca2+ flux and autocrine brain-derived neurotrophic factor (BDNF)-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that, by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampus-dependent learning.


Subject(s)
Autocrine Communication/physiology , Brain-Derived Neurotrophic Factor/physiology , Calcium Signaling/physiology , Neuronal Plasticity/physiology , Protein Kinase C-alpha/physiology , Animals , Autocrine Communication/genetics , Brain-Derived Neurotrophic Factor/genetics , Calcium Signaling/genetics , Dendritic Spines , Enzyme Activation , Hippocampus/physiology , Isoenzymes , Kinetics , Learning/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase C-alpha/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
3.
ACS Comb Sci ; 14(12): 673-9, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23110623

ABSTRACT

A positional scanning cyclic peptide library was generated using a penta-peptide thioester scaffold. Glycine was fixed at position R(1). Diaminopropionic acid was fixed at position R(3), with its γ-amino attaching to an anthraniloyl group. Positions R(2) and R(4) contained 36 L- and D- amino acids and position R(5) contained 19 L- amino acids. Cyclization was performed in a mixture of acetonitrile and 1.5 M aqueous imidazole solution (7:1 v/v) at room temperature for 5 days. No significant cross-oligomerization was detected under the cyclization conditions. The library was screened in a binding assay for mu opioid receptor, identifying the active amino acid mixture at each position. A total of 40 individual cyclic peptides were identified and synthesized by the combinations of the most active amino acid mixtures found at three positions 5 × 4 × 2. Two cyclic peptides exhibited high binding affinities to opioid receptor. The most active cyclic peptide in the library was yielded to have Tyr at R(2), D-Lys at R(4), and Tyr at R(5). Further investigation on this compound revealed the side chain-to-tail isomer to have greater binding affinity (14 nM) than the head-to-tail isomer (39 nM). Both isomers were selective for the mu-opioid receptor.


Subject(s)
Fluorescence , Peptide Library , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Receptors, Opioid, mu/metabolism , Imidazoles/chemistry , Ligands , Molecular Structure , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship
4.
Cell Biol Toxicol ; 28(2): 89-101, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22228498

ABSTRACT

Oxidative stress contributes to several debilitating neurodegenerative diseases. To facilitate direct monitoring of the cytoplasmic oxidation state in neuronal cells, we have developed roTurbo by including several mutations: F223R, A206K, and six of the mutations for superfolder green fluorescent protein. Thus we have generated an improved redox sensor that is much brighter in cells and oxidizes more readily than roGFP2. Cytoplasmic expression of the sensor demonstrated the temporal pattern of 6-hydroxydopamine (6-OHDA) induced oxidative stress in a neuroblastoma cell line (SH-SY5Y). Two distinct oxidation responses were identified in SH-SY5Y cells but a single response observed in cells lacking monoamine transporters (HEK293). While both cell lines exhibited a rapid transient oxidation in response to 6-OHDA, a second oxidative response coincident with cell death was observed only in SH-SY5Y cells, indicating an intracellular metabolism of 6-OHDA, and or its metabolites are involved. In contrast, exogenously applied hydrogen peroxide induced a cellular oxidative response similar to the first oxidation peak, and cell loss was minimal. Glucose deprivation enhanced the oxidative stress induced by 6-OHDA, confirming the pivotal role played by glucose in maintaining a reduced cytoplasmic environment. While these studies support previous findings that catecholamine auto-oxidation products cause oxidative stress, our findings also support studies indicating 6-OHDA induces lethal oxidative stress responses unrelated to production of hydrogen peroxide. Finally, temporal imaging revealed the sporadic nature of the toxicity induced by 6-OHDA in neuroblastoma cells.


Subject(s)
Cytoplasm/drug effects , Molecular Imaging/methods , Oxidative Stress/drug effects , Oxidopamine/toxicity , Toxicity Tests/methods , Acetylcysteine/pharmacology , Arginine/genetics , Cell Culture Techniques , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cloning, Molecular , Culture Media , Cytoplasm/metabolism , Glucose/metabolism , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Mutation , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oxidation-Reduction , Oxidopamine/metabolism , Phenylalanine/genetics , Transfection
5.
Brain Res Bull ; 70(2): 186-95, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16782508

ABSTRACT

The nuclear receptor Nurr1 is essential for the development of midbrain dopamine neurons and appears to be an important regulator of dopamine levels as adult Nurr1-null heterozygous (+/-) mice have reduced mesolimbic/mesocortical dopamine levels. The mechanism(s) through which reduced Nurr1 expression affects dopamine levels has not been determined. Quantitative real-time PCR revealed a significant reduction in tyrosine hydroxylase (TH) and GTP cyclohydrolase (GTPCH) mRNA in ventral midbrain of +/- mice as compared to wild-type mice (+/+). The effect on TH expression was only observed at birth, while reduced GTP cyclohydrolase was also observed in the adult ventral tegemental area. No differences in dopamine transporter, vesicular monoamine transporter, dopamine D2 receptor or aromatic amino acid decarboxylase were observed. Since TH and GTPCH are both involved in dopamine synthesis, regulation of in vivo TH activity was measured in these mice. In vivo TH activity was reduced in nucleus accumbens and striatum of the +/- mice (24.7% and 15.7% reduction, respectively). In the striatum, gamma-butyrolactone exacerbated differences on +/- striatal TH activity (29.8% reduction) while haloperidol equalized TH activity between the +/+ and +/-. TH activity in the nucleus accumbens was significantly reduced in all conditions measured. Furthermore, dopamine levels in the striatum of +/- mice were significantly reduced after inhibition of dopamine synthesis or after haloperidol treatment but not under basal conditions while dopamine levels in the nucleus accumbens were reduced under basal conditions. Based on these data the +/- genotype results in changes in gene expression and impairs dopamine synthesis which can affect the maintenance of dopamine levels, although with differential effects between mesolimbic/mesocortical and nigrostriatal dopamine neurons. Together, these data suggest that Nurr1 may function to modify TH and GTPCH expression and dopamine synthesis.


Subject(s)
DNA-Binding Proteins/deficiency , GTP Cyclohydrolase/biosynthesis , Gene Expression Regulation, Enzymologic/physiology , RNA, Messenger/biosynthesis , Transcription Factors/deficiency , Tyrosine 3-Monooxygenase/biosynthesis , Animals , Animals, Newborn , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/genetics , Enzyme Activation/physiology , GTP Cyclohydrolase/genetics , Mice , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 2 , RNA, Messenger/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics , Tyrosine 3-Monooxygenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...