Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(5): 815-828, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38267395

ABSTRACT

In this study, we investigate a set of organic diradical structures in which two oxo-verdazyl radicals are selected as radical spin centers that are connected (coupled) via six coupler molecules (CM), resulting in various magnetic (ferromagnetic (FM) or antiferromagnetic (AFM)) characteristics, as reflected by their exchange coupling constants (J). We have designed 12 diradicals with 6-antiaromatic couplers coupled with bis-oxo-verdazyl diradicals with meta-meta (m-m) and para-meta (p-m) positional connectivities. The nature of the magnetic coupling (ferromagnetic, nonmagnetic, or antiferromagnetic) and the magnitude of the exchange constant J depend on the type of coupler, the connecting point between each radical center and CM, the degree of aromaticity of the coupler, and the length of the through-bond distance between radical centers. The computed magnetic exchange coupling constants J for these diradicals at the B3LYP/6-311++G(d,p) and MN12SX/6-311++G(d,p) levels of theory are large for many of these structures, indicating strong ferromagnetic coupling (with positive J values). In some cases, magnetic couplings are observed with J > 1000 cm-1 (B3LYP/6-311++G(d,p)) and strong antiferromagnetic coupling (with negative J values) with J < -1000 cm-1 (B3LYP/6-311++G(d,p)). Similarly, in some cases, magnetic couplings are observed with J > 289 cm-1 (MN12SX/6-311++G(d,p)) and strong antiferromagnetic coupling (with negative J values) with J < -568 cm-1 (MN12SX/6-311++G(d,p)). Furthermore, while numerous studies have reported that the degree of aromaticity of molecular couplers often favors strong ferromagnetic coupling, displaying the high-spin character of diradicals in their ground states, the couplers chosen in this study are characterized as antiaromatic or nonaromatic. The current investigation provides evidence that, remarkably, antiaromatic couplers are able to enhance stability by favoring electronic diradical structures with very strong ferromagnetic coupling when the length of the through-bond distance and connectivity pattern between radical centers are selected in such a way that the FM coupling is optimized. The findings in this study offer new strategies in the design of novel organic materials with interesting magnetic properties for practical applications.

2.
Phys Chem Chem Phys ; 25(21): 14786-14798, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37194420

ABSTRACT

The effect of heteroatoms on exchange coupling pathways and the presence of more than one coupling paths are investigated. The lone pairs of sp2-hybridized heteroatoms contribute to aromaticity but do not play any pivotal role in the spin coupling between two spin centers. A conceptual model to describe this behavior of heteroatoms has been introduced, and we name it as the hetero-atom blocking effect. With the occurrence of two π-orbital exchange coupling pathways (ECPs) via bridgehead heteroatoms (B-, N-, O-, or S-), the magnetic exchange coupling constants (J) can be viewed as a signed sum of different individual pathways. The effect of σ-electron coupling is also investigated in this work.

3.
Phys Chem Chem Phys ; 25(16): 11816-11826, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37067515

ABSTRACT

In this work, we computationally investigated nickelocene and chromocene-coupled linear carbon chains. The designed systems are [Ni]-Cn-Ni], [Cr]-Cn-[Cr] and [Cr]-Cn-[Ni] (n = 3 to 9), where [Ni], [Cr] and Cn represent nickelocene (NiCp2, Cp = cyclopentadienyl), chromocene (CrCp2) and linear carbon chains respectively. The magnetic properties of these systems were computationally investigated by a density functional theory-based method. Ferromagnetic ground states were observed for [Ni]-Cn-[Ni] and [Cr]-Cn-[Cr] complexes for couplers with odd numbers of carbon atoms (n = 3, 5, 7 and 9), whereas antiferromagnetic ground states result for couplers with even numbers of carbon atoms (n = 4, 6 and 8). However, a totally opposite trend is followed by [Cr]-Cn-[Ni] complexes due to the spin polarization inside the chromocene. The calculation and study of magnetic anisotropy for all the ferromagnetic complexes suggest that the [Ni]-Cn-[Ni] complexes with coupler of odd number of carbon atoms will be suitable for the synthesis of single-molecule magnets among the designed complexes.

4.
Chemphyschem ; 24(8): e202200889, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36622254

ABSTRACT

This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII (hfac)2 (imVDZ)] and [MII (hfac)2 (pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.

5.
J Phys Condens Matter ; 34(34)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35688140

ABSTRACT

In this study we have designed a spin caloritronic device based on boron doped armchair graphene nanoribbons (B2-7AGNR). In presence of ferromagnetic (FM) graphitic-carbon nitride (g-C4N3) electrodes the spin-thermoelectric features of the device, both for FM and antiferromagnetic (AFM) states, are studied using first principle calculations. The spin polarized transmission peaks and the presence of density of states near the Fermi level indicate that the system have large spin-thermoelectric figure of merit. In addition, it is observed that the system has a large tunneling magnetoresistance due to the difference in total current between FM and AFM configurations. Further studies reveal that the spin component of the Seebeck coefficient of the device is much higher than the other zigzag and armchair nanoribbons. When the spin magnetic moments of the electrodes are aligned in parallel manner, spin-thermoelectric figure of merit of the system becomes significantly high. It has also been found that on decreasing temperature the efficiency of the device increases. As a whole, the numerical results show thatg-C4N3-B2-7AGNR-g-C4N3system in FM configuration is an efficient low temperature thermoelectric device.

6.
J Org Chem ; 87(14): 9222-9231, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35771188

ABSTRACT

The lack of directionality and the long-range nature of Coulomb interactions have been a bottleneck to achieve chemically precise C-H activation using ion-pairs. Recent report by Phipps and co-workers of the ion-pair-directed regioselective Iridium-catalyzed borylation opens a new direction toward harnessing noncovalent interactions for C-H activation. In this article, the mechanism and specific role of ion-pairing are investigated using density functional theory (DFT). Computational studies reveal that meta C-H activation is kinetically more favorable than the para analogue due to stronger electrostatic interactions between the ion-pairs in closer proximity [d(NMe3+···SO3-)TSP1m = 3.93 Å versus d(NMe3+···SO3-)TSP1p = 4.30 Å]. The electrostatic interactions overwhelm the Pauli repulsion and distortion interactions incurred in bringing the oppositely charged ions in close contact for the rate-limiting meta transition state (TSP1m). Multiple linear regression shows that the free energies of activation correlate well with descriptors like the charge densities on the meta carbon and Ir atom along with that on the cation and anion with R2 = 0.74. Tuned range-separated DFT calculations demonstrate accurately the localization of charge separation in the reactant complex and transition state for the meta selectivity.

7.
Chemphyschem ; 22(13): 1379-1388, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33977620

ABSTRACT

We have theoretically investigated the magnetic properties of heteroallene (>C=C=X-) and heterocumulene (>C=C=C=X-) based tert-butyl nitroxide diradicals (X is P/As). Calculation of magnetic exchange coupling constant (J) shows ferromagnetic interaction in heteroallene based diradicals. Whereas, in heterocumulene based diradicals, tuning of J value from antiferro- to ferro-magnetic state is observed from Z- to E- isomer. Delocalization of spin density from radical site to the coupler (in planar arrangement) is observed in spin distribution analysis which is also advocated by molecular orbital analysis. The typical feature of tert-butyl nitroxide radical creates spin delocalization along with spin polarization within the coupler. The J values of all the diradicals strongly depend on the dihedral angle between radical center and coupler. Magneto-structural correlation shows that the change in dihedral angle tunes the magnetic property for both the Z- and E- isomers of heterocumulenes depending on the spin accumulation on two nearby magnetic centers. The extent of spin delocalization and conformation of spin centers on the molecular axis are important for the different J values observed in our designed systems.

8.
J Phys Chem A ; 125(12): 2436-2445, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33749280

ABSTRACT

The influence of donor-acceptor (D-A) groups on the nonlinear optical (NLO) property of B12N12 functionalized nanocluster has been investigated by density functional theory. We study the effect of bonding of three electron acceptor ligands (CN, COOH, and NO2) and three donor ligands (NH2, N(CH3)2, and PhNH2) positioned at opposite ends of B12N12 nanocluster in the gas phase. The result reveals that the complexation of D-A groups on the B12N12 nanocluster is energetically favorable and significantly narrowed the HOMO-LUMO gaps. The functionalization of D-A groups lead to an extremely large first hyperpolarizability value. Our survey reports the strongest NLO responses found in PhNH2-B12N12-PhCN cluster (1882.47 × 10-30 esu), whereas centrosymmetric B12N12 cluster yields a zero hyperpolarizability value. Designed systems are analyzed through the HOMO-LUMO gap, frontier molecular orbital, hyperpolarizability, Δr index, transition dipole moment density, density of states (DOS), and molecular electrostatic potential. The obtained results are well correlated with the computed absorption spectra of the molecule. The results demonstrate that phenyl ring incorporated D-A groups amplify the NLO response to a larger extent. The significant first hyperpolarizability arises due to charge transfer from the donor to the acceptor moiety. As a whole, this theoretical work provides a direction to researchers that the right choice of substitution can considerably impact the nonlinear optical property of BN nanoclusters.

9.
RSC Adv ; 10(66): 40300-40309, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-35520880

ABSTRACT

Intramolecular charge transfer process can play a key role in developing strong nonlinear optical (NLO) response in a molecule for technological application. Herein, two series of boron dipyrromethene (BODIPY)-based push-pull systems have been designed with zwitterionic donor-acceptor groups, and their NLO properties have been evaluated using a density functional theory-based approach. Different π-conjugated linkers and electron acceptor groups were used to understand their roles in tuning the NLO properties. The molecules were analyzed through HOMO-LUMO gaps, frontier molecular orbitals, polarizabilities, hyperpolarizabilities, Δr indices, transition dipole moment densities, ionization potentials, electron affinities and reorganization energies for holes and electrons. These observations correlated well with the computed absorption spectra of the molecules. It is found that with the introduction of different π-linkers in the molecule, planarity is maintained and the HOMO-LUMO gap is systematically decreased, which leads to a large NLO response. It was noted that the electronic absorption wavelength maxima were found in the near-infrared region (934-1650 nm). The results show that compared to the pyridinium acceptor group, the imidazolium acceptor group in the BODIPY systems amplifies the NLO response to a larger extent. It is also observed that the BODIPY-based dye with an imidazolium acceptor and thienothiophene π-linker shows the highest first hyperpolarizability value of 3194 × 10-30 esu. Furthermore, the charge transfer occurs in the z-direction, as the z-component of the first hyperpolarizability is the dominant factor in this system. Here, the designed molecules show a characteristic reorganisation energy value, which is a deciding factor in the rate of hole/electron transport for favourable intermolecular coupling. As a whole, this theoretical work highlights that π-conjugated linkers and electron acceptor groups can be used judiciously to design new molecular systems for optoelectronic applications.

10.
Phys Chem Chem Phys ; 21(15): 7996-8003, 2019 Apr 21.
Article in English | MEDLINE | ID: mdl-30924835

ABSTRACT

We investigate the underlying principle behind the occurrence of bond stretch isomerism in Be32-, which has not been revealed yet. Various computational studies of the different isomers are carried out at the complete active space self-consistent field (CASSCF) level of theory in addition to the B3LYP level in conjunction with the 6-311++G(d) basis set. The potential energy surfaces linking the different isomers through transition states and conical intersections are investigated at the CASSCF level, connecting various geometrical isomers of Be32-. The linear intermediate of the Be32- cluster is considered to be of profound importance since its excited state is found to be degenerate and undergoing the Renner-Teller effect, producing two triangular bond stretch isomers. Ab initio molecular dynamics simulations based on the Atom Centered Density Matrix Propagation (ADMP) method also further elucidate the phenomenon of isomerization via the linear intermediate. The variation of the global reactivity descriptors and free energy profile along the bond stretch isomerization path is also investigated. The estimated aromatic stabilization energy also corroborates the stability ordering of the bond stretch isomers.

11.
J Mol Model ; 24(9): 230, 2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30097838

ABSTRACT

The resulting distortion of the octahedral symmetry of the complex [CrIII(NH3)6]3+ upon replacing the axial ligands with halides (i.e., weaker ligands) affects the stability of the doublet state with respect to that of the quartet ground state. This substitution affects the doublet-to-quartet transition responsible for phosphorescence. The position of the halide with respect to ammonia in the spectrochemical series is a major influence on the emission wavelength of the complex. The close proximity of fluorine and ammonia in the spectrochemical series leads to a blueshift in the emission wavelength when fluoride ions are introduced into the complex, thus providing a rational approach to the design of blue-phosphorescent materials, which are desirable for OLEDs used in full-color displays. Graphical abstract Shifts in the phosphorescence emission wavelength of an octahedral Cr(III) complex caused by axial ligand substitution. Replacing the axial ligands leads to a change in the relative positions of the axial and equatorial ligands in the spectrochemical series, which in turn induces a redshift or a blueshift in the emission wavelength.

12.
Phys Chem Chem Phys ; 20(28): 19007-19016, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30019717

ABSTRACT

The NLO properties of two synthesized aryl extended thiophene fused nickel dithiolenes have been studied theoretically. Based on these two systems, a systematic modification has been made by substituting neutral and zwitterionic donor-acceptor groups at the aryl (phenyl and thenyl) ring to enlarge their NLO responses. Among the four designed systems, the zwitterionic donor-acceptor group significantly reduces the HOMO-LUMO energy gap, resulting in an enormous increase in the first hyperpolarizability (ß) values. To judge their high NLO response, transition dipole moment (TDM) density values have been plotted and it has been found that electron dissipation occurs from one donor part to the acceptor part with a high Δr index value. It should be noted that the high Δr index values are a quantitative measurement to understand the type of transitions, and we noticed that a charge transfer transition occurs in the case of zwitterionic systems. Hence, a relationship between the first hyperpolarizability and TDM has been established. In order to highlight the NLO active segment in a molecule, a density analysis has also been done. We anticipate that as our designed systems possess high ß values, they should have significance in optical uses.

13.
J Phys Chem A ; 122(16): 4111-4120, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29634263

ABSTRACT

Five napthyridine-based fluorine-boron (BF2-napthyridine) conjugated compounds have been theoretically designed, and subsequently, their photophysical properties are investigated. The influence of electron-donating and electron-withdrawing groups attached with the N∧C∧O moiety of BF2-napthyridine molecule has been interpreted. The optoelectronic properties, including absorption spectra and emission spectra of the BF2-napthyridine derivatives are studied using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) based methods. Different characteristics, such as HOMO-LUMO gap, molecular orbital density, ionization potential, electron affinity, and reorganization energy for hole and electron, are calculated. All these molecules show excellent π-electron delocalization. TD-DFT results illustrate that the amine-substituted BF2-napthyridine derivative has the highest absorption and emission maxima; it also shows a maximum Stoke shift. These results are well-correlated with the structural parameters and calculated HOMO-LUMO gap. Moreover, it is found that introduction of an electron-donating group into the BF2-napthyridine complex improves the hole transport properties and provides useful clues in designing new materials for organic light emitting diodes (OLED). As a whole, this work demonstrates that electron-donating and electron-withdrawing groups in BF2 derivatives can extend their effectiveness toward designing of OLED materials, vitro cellular studies, ex vivo assays, and in vivo imaging agents.

14.
Phys Chem Chem Phys ; 20(14): 9364-9375, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29564439

ABSTRACT

We have investigated the intramolecular magnetic exchange coupling constants (J) for a series of nitronyl nitroxide diradicals connected by a range of linear conjugated and cumulene couplers focusing on the unusual π-interaction properties within the couplers. Distance between radical centers, spin density within the couplers, as well as the dihedral angles between the radical centers and the plane of the coupler influence the strength of magnetic coupling. We also establish that with the increase in the length of the coupler, the strength of magnetic interaction in conjugated and cumulated systems varies in a different way. Transport calculations show that with the increase in chain length, diradicals based on cumulene containing an even number of carbon atoms act as better conductors than cumulenes with an odd number of carbon atoms. It is also observed that with the increase in the length of the conjugated coupler based diradicals, transmission does not vary in a sequential way.

15.
Inorg Chem ; 56(12): 6870-6878, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28561569

ABSTRACT

In this work, the effects of ligand field strength as well as the metal coordination geometry on magnetic anisotropy of pentacoordinated CoII complexes have been investigated using a combined experimental and theoretical approach. For that, a strategic design and synthesis of three pentacoordinate CoII complexes [Co(bbp)Cl2]·(MeOH) (1), [Co(bbp)Br2]·(MeOH) (2), and [Co(bbp)(NCS)2] (3) has been achieved by using the tridentate coordination environment of the ligand in conjunction with the accommodating terminal ligands (i.e., chloride, bromide, and thiocyanate). Detailed magnetic studies disclose the occurrence of slow magnetic relaxation behavior of CoII centers with an easy-plane magnetic anisotropy. A quantitative estimation of ZFS parameters has been successfully performed by density functional theory (DFT) calculations. Both the sign and magnitude of ZFS parameters are prophesied well by this DFT method. The theoretical results also reveal that the α → ß (SOMO-SOMO) excitation contributes almost entirely to the total ZFS values for all complexes. It is worth noting that the excitation pertaining to the most positive contribution to the ZFS parameter is the dxy → dx2-y2 excitation for complexes 1 and 2, whereas for complex 3 it is the dz2 → dx2-y2 excitation.

16.
Phys Chem Chem Phys ; 19(19): 11744-11747, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28447087

ABSTRACT

The domain of aromaticity spans a wide range of molecules, from polycyclic aromatic hydrocarbons, heterocycles to all-metal systems. Here, in silico we demonstrate the aromaticity in C2B2F4, extending beyond the limit of conventional aromatic molecules. This molecule gains the magic number of six π-electrons through an unusual electronic contribution from exo-cyclic atoms. The stability of the molecule is established through density functional theory, ab initio calculations as well as molecular dynamics simulation.

17.
J Phys Chem A ; 120(45): 9117-9130, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27762548

ABSTRACT

Here we study a set of novel magnetic organic molecular species with different halide ions (fluoride, chloride, bromide) absorbed ∼2 Å above or below the center of an aromatic π-ring in an m-aminyl diradical. Focus is on the nature of anion-π interaction and its impact on magnetic properties, specifically on magnetic anisotropy and on intramolecular magnetic exchange coupling. In the development of single molecule magnets, magnetic anisotropy is considered to be the most influential factor. A new insight regarding the magnetic anisotropy that determines the barrier height for relaxation of magnetization of m-aminyl diradical-derived anionic complexes is obtained from calculations of the axial zero-field-splitting (ZFS) parameter D. The noncovalent anion-π interaction strongly influences magnetic anisotropy in m-aminyl-halide diradical complexes. In particular, the change of D values from positive (for the m-aminyl diradical, m-aminyl diradical/fluoride, and m-aminyl diradical/chloride complexes) to negative D-values in m-aminyl diradical complexes containing bromide signals a change from oblate to prolate type of spin-density distribution. Furthermore, the noncovalent halide-π interactions lead to large values of intramolecular magnetic exchange coupling coefficients J exhibiting a ferromagnetic sign. The magnitude of J steadily increases going from anionic complexes containing fluoride to chloride and then to bromide. Relations are sought between the magnetic exchange coupling coefficients J and aromaticity, namely structural HOMA (harmonic oscillator model of aromaticity) and magnetic NICS (nucleus independent chemical shift) aromaticity indices, in particular, the NICSzz(+1) component. Finally, possible numerical checks on the conditions relating to validity of the well-known Yamaguchi's formula for calculating the exchange coupling coefficient J in diradical systems are discussed.

18.
J Org Chem ; 81(13): 5623-30, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27285309

ABSTRACT

A total of nine diradical-based organic chiral magnetic molecules with allene and cumulene couplers have been theoretically designed, and subsequently, their magnetic property has been studied by density functional theory. It is found that with an increase in length of the coupler, a remarkable increase in spin density within the coupler takes place. An increase in the length of the coupler reduces the energy of LUMO, and a smaller HOMO-LUMO gap facilitates stronger magnetic coupling and thereby a higher magnetic exchange coupling constant (J). This observation is supported by the occupation number of natural orbitals.

19.
Phys Chem Chem Phys ; 17(36): 23378-83, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26287641

ABSTRACT

Here, in this work we have designed a molecular bridge structure which can be used as a spin filter where the prototypical highly ferromagnetic m-phenylene connected bis(aminoxyl) diradical is used as a bridging fragment between two semi-infinitely widened gold (Au) electrodes along the [100] direction. A state-of-the-art non-equilibrium Green function's (NEGF) method coupled with the density functional theory (DFT) was carried out on this two-probe molecular bridge system to understand its electrical spin transport characteristics. The spin current at various bias voltages from 0.00 V to 4.00 V at intervals of 0.20 V for this Au-diradical-Au molecular junction is evaluated. We also quantify the bias-dependent spin injection coefficients (BDSIC) at different bias voltages and also the spin-filter efficiency at equilibrium, i.e., at zero bias voltage. Also plots of BDSIC vs. voltage, the up- and down-spin current vs. voltage (I-V) curves, and density of states (DOS) at zero bias voltage are evaluated.

20.
Phys Chem Chem Phys ; 17(21): 14223-37, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25964003

ABSTRACT

The spin blocker capacity of borazine is investigated. Specifically, meta-B-B, meta-N-N and para-B-N connected borazines are used as spin-blocker couplers comprised of a pair of radicals: two iminonitroxides (IN); IN and tetrathiafulvalene radical cations (TTF); or two TTFs. Density functional theory (DFT) is used to elucidate the spin blocker capacity of the linkage-specific (meta or para) borazine-coupler and elaborate the role of the lowest unoccupied molecular orbital (LUMO) in magnetic-exchange. Furthermore, a qualitative relation between different magnetic aromaticity indices is made using both nuclear-independent chemical shift (NICS) and the harmonic oscillator model of aromaticity (HOMA). The NICS values are calculated at the centre of the borazine spacer fragment of these diradical species and then also at 0.5 Å increments of the virtual probe from this centre position up to an orthogonal distance of 2.0 Å from the centre. The HOMA values are calculated for the borazine ring fragment in these diradicals. Based on the HOMA and NICS values, it is evident that the borazine exhibits less aromatic character than benzene itself - due to the polar nature of B-N π-bonding. The LUMO mediated spin-exchange between the two consecutive singly occupied molecular orbitals (SOMOs) is explicitly discussed and confirmed to play a pivotal role. The parity of the coupler pathways, i.e. even or odd number of bonds along a selected pathway, between radical moieties is an important factor in predicting the nature and extent of magnetic exchange for these diradicals. Surprisingly, borazine does not always act as a spin-coupling blocker - rather in some cases the coupling is enhanced as compared to a homoatomic (carbon-based) benzene coupler.

SELECTION OF CITATIONS
SEARCH DETAIL
...