Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(1): eadf1070, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36608121

ABSTRACT

We propose heat machines that are nonlinear, coherent, and closed systems composed of few field (oscillator) modes. Their thermal-state input is transformed by nonlinear Kerr interactions into nonthermal (non-Gaussian) output with controlled quantum fluctuations and the capacity to deliver work in a chosen mode. These machines can provide an output with strongly reduced phase and amplitude uncertainty that may be useful for sensing or communications in the quantum domain. They are experimentally realizable in optomechanical cavities where photonic and phononic modes are coupled by a Josephson qubit or in cold gases where interactions between photons are transformed into dipole-dipole interacting Rydberg atom polaritons. This proposed approach is a step toward the bridging of quantum and classical coherent and thermodynamic descriptions.

2.
Phys Rev E ; 106(5-1): 054131, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559367

ABSTRACT

Our goal in this article is to elucidate the rapport of work and information in the context of a minimal quantum-mechanical setup: a converter of heat input to work output, the input consisting of a single oscillator mode prepared in a hot thermal state along with a few much colder oscillator modes. The core issues we consider, taking account of the quantum nature of the setup, are as follows: (i) How and to what extent can information act as a work resource or, conversely, be redundant for work extraction? (ii) What is the optimal way of extracting work via information acquired by measurements? (iii) What is the bearing of information on the efficiency-power tradeoff achievable in such setups? We compare the efficiency of work extraction and the limitations of power in our minimal setup by different, generic, measurement strategies of the hot and cold modes. For each strategy, the rapport of work and information extraction is found and the cost of information erasure is allowed for. The possibilities of work extraction without information acquisition, via nonselective measurements, are also analyzed. Overall, we present, by generalizing a method based on optimized homodyning that we have recently proposed, the following insight: extraction of work by observation and feedforward that only measures a small fraction of the input is clearly advantageous to the conceivable alternatives. Our results may become the basis of a practical strategy of converting thermal noise to useful work in optical setups, such as coherent amplifiers of thermal light, as well as in their optomechanical and photovoltaic counterparts.

3.
Phys Rev Lett ; 127(4): 040602, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34355968

ABSTRACT

We put forward the concept of work extraction from thermal noise by phase-sensitive (homodyne) measurements of the noisy input followed by (outcome-dependent) unitary manipulations of the postmeasured state. For optimized measurements, noise input with more than one quantum on average is shown to yield heat-to-work conversion with efficiency and power that grow with the mean number of input quanta, the efficiency and the inverse temperature of the detector. This protocol is shown to be advantageous compared to common models of information and heat engines.

4.
Phys Rev E ; 97(6-1): 062116, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011569

ABSTRACT

Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.

5.
Article in English | MEDLINE | ID: mdl-26565222

ABSTRACT

We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.

6.
Article in English | MEDLINE | ID: mdl-26066137

ABSTRACT

Quantum discord is a measure of quantum correlations beyond the entanglement-separability paradigm. It is conceptualized by using the von Neumann entropy as a measure of disorder. We introduce a class of quantum correlation measures as differences between total and classical correlations, in a shared quantum state, in terms of the sandwiched relative Rényi and Tsallis entropies. We compare our results with those obtained by using the traditional relative entropies. We find that the measures satisfy all the plausible axioms for quantum correlations. We evaluate the measures for shared pure as well as paradigmatic classes of mixed states. We show that the measures can faithfully detect the quantum critical point in the transverse quantum Ising model and find that they can be used to remove an unquieting feature of nearest-neighbor quantum discord in this respect. Furthermore, the measures provide better finite-size scaling exponents of the quantum critical point than the ones for other known order parameters, including entanglement and information-theoretic measures of quantum correlations.

SELECTION OF CITATIONS
SEARCH DETAIL
...