Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 16(14): 6939-6948, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38511623

ABSTRACT

Ionizable lipid nanoparticles (LNPs) have emerged as a powerful tool for the intracellular delivery of nucleic acids. Following the recent success of LNP-based siRNA therapeutics and mRNA vaccines, the use of ionizable lipids for nucleic acid delivery has tremendously increased. Here, we introduce a flash nanoprecipitation (FNP) approach using the confined impingement (CIJ) mixer to stably self-assemble ionizable LNPs. To validate this approach, we employed three clinically relevant LNP formulations containing SM102, ALC0315, and DLin-MC3-DMA as ionizable lipids. FNP-assembled LNPs showed >95% encapsulation efficiency of mRNA and siRNA payloads and particle sizes below 150 nm. SM102 or ALC0315 LNPs demonstrated efficient delivery of mRNA into immune cells in vitro and to lymphoid organs in vivo, whereas Dlin-MC3-DMA LNPs allowed effective intracellular siRNA delivery with great functional ability. The FNP technique could economically produce LNPs in smaller volumes that are highly suitable for the discovery phase.


Subject(s)
Lipids , Nanoparticles , Liposomes , RNA, Small Interfering/genetics , RNA, Messenger/genetics
2.
Discov Nano ; 19(1): 4, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175336

ABSTRACT

Acetalated dextran (Ac-Dex) nanoparticles are currently of immense interest due to their sharp pH-responsive nature and high biodegradability. Ac-Dex nanoparticles are often formulated through single- or double-emulsion methods utilizing polyvinyl alcohol as the stabilizer. The emulsion methods utilize toxic organic solvents such as dichloromethane or chloroform and require multi-step processing to form stable Ac-Dex nanoparticles. Here, we introduce a simple flash nanoprecipitation (FNP) approach that utilizes a confined impinging jet mixer and a non-toxic solvent, ethanol, to form Ac-Dex nanoparticles rapidly. Ac-Dex nanoparticles were stabilized using nonionic PEGylated surfactants, D-α-Tocopherol polyethylene glycol succinate (TPGS), or Pluronic (F-127). Ac-Dex nanoparticles formed using FNP were highly monodisperse and stably encapsulated a wide range of payloads, including hydrophobic, hydrophilic, and macromolecules. When lyophilized, Ac-Dex TPGS nanoparticles remained stable for at least one year with greater than 80% payload retention. Ac-Dex nanoparticles were non-toxic to cells and achieved intracellular release of payloads into the cytoplasm. In vivo studies demonstrated a predominant biodistribution of Ac-Dex TPGS nanoparticles in the liver, lungs, and spleen after intravenous administration. Taken together, the FNP technique allows easy fabrication and loading of Ac-Dex nanoparticles that can precisely release payloads into intracellular environments for diverse therapeutic applications. pH-responsive Acetalateddextran can be formulated using nonionic surfactants, such as TPGS or F-127, for intracellular release of payloads. Highly monodisperse and stable nanoparticles can be created through the simple, scalable flash nanoprecipitation technique, which utilizes a confined impingement jet mixer.

3.
Nano Res ; 16(5): 6974-6990, 2023.
Article in English | MEDLINE | ID: mdl-36685637

ABSTRACT

Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.

4.
Sci Rep ; 12(1): 9261, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661757

ABSTRACT

Neurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigated the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.


Subject(s)
Membrane Fusion , SNARE Proteins , Membrane Fusion/physiology , Munc18 Proteins/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Synapses/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism , Syntaxin 1/genetics , Syntaxin 1/metabolism
5.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: mdl-34685624

ABSTRACT

Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ+) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics.


Subject(s)
Central Amygdaloid Nucleus/metabolism , Chronic Pain/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Glutamate/metabolism , Signal Transduction , Synapses/metabolism , Animals , Behavior, Animal , Chronic Pain/complications , Chronic Pain/physiopathology , Disease Models, Animal , Down-Regulation , Female , Inflammation/complications , Inflammation/pathology , Male , Mice, Knockout , Nociception/drug effects , Rats , Recombinant Proteins/pharmacology , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL