Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(2): 1629-1646, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38169482

ABSTRACT

Understanding the behavior of water contacting two-dimensional materials, such as hexagonal boron nitride (hBN), is important in practical applications, including seawater desalination and energy harvesting. Water, being a polar solvent, can strongly polarize the hBN surface via the electric fields that it generates. However, there is a lack of molecular-level understanding about the role of polarization effects at the hBN/water interface, including its effect on the wetting properties of water. In this study, we develop a theoretical framework that introduces an all-atomistic polarizable force field to accurately model the interactions of water molecules with hBN surfaces. The force field is then utilized to self-consistently describe the water-induced polarization of hBN using the classical Drude oscillator model, including predicting the hBN-water binding energies which are found to be in excellent agreement with diffusion Monte Carlo (DMC) predictions. By carrying out molecular dynamics (MD) simulations, we demonstrate that the polarizable force field yields a water contact angle on multilayered hBN which is in close agreement with the recent experimentally reported values. Conversely, an implicit modeling of the hBN-water polarization energy utilizing a Lennard-Jones (LJ) potential, a commonly utilized approximation in previous MD simulation studies, leads to a considerably lower water contact angle. This difference in the predicted contact angles is attributed to the significant energy-entropy compensation resulting from the incorporation of polarization effects at the hBN-water interface. Our work highlights the importance of self-consistently modeling the hBN-water polarization energy and offers insights into the wetting-related interfacial phenomena of water on polarizable materials.

2.
Langmuir ; 40(1): 159-169, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38095654

ABSTRACT

Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.08 wt/v%, near the critical micelle concentration. This unexpected observation is achieved by introducing "bare" nanotubes into water containing the anionic surfactant sodium deoxycholate (DOC) through a superacid-surfactant exchange process that eliminates the need for ultrasonication. Among the diverse ionic surfactants and charged biopolymers explored, DOC exhibits the highest dispersion efficiency, outperforming sodium cholate, a structurally similar bile salt surfactant containing just one additional oxygen atom compared to DOC. Employing all-atomistic molecular dynamics simulations, we unravel that the greater stabilization by DOC arises from its higher binding affinity to nanotubes and a substantially larger free energy barrier that resists nanotube rebundling. Further, we find that this barrier is nonelectrostatic in nature and does not obey the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, underscoring the important role of nonelectrostatic dispersion and hydration interactions at the nanoscale, even in the case of ionic surfactants like DOC. These molecular insights advance our understanding of surfactant chemistry at the bare nanotube limit and suggest low-energy, surfactant-efficient solution processing of SWCNTs and potentially other nanomaterials.

3.
Chem Rev ; 123(6): 2737-2831, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36898130

ABSTRACT

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.

4.
Nano Lett ; 23(2): 389-397, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36602909

ABSTRACT

Recent measurements of fluids under extreme confinement, including water within narrow carbon nanotubes, exhibit marked deviations from continuum theoretical descriptions. In this work, we generate precise carbon nanotube replicates that are filled with water, closed from external mass transfer, and studied over a wide temperature range by Raman spectroscopy. We study segments that are empty, partially filled, and completely filled with condensed water from -80 to 120 °C. Partially filled, nanodroplet states contain submicron vapor-like and liquid-like domains and are analyzed using a Clausius-Clapeyron-type model, yielding heats of condensation of water inside closed 1.32 nm diameter carbon nanotubes (3.32 ± 0.10 kJ/mol and 3.72 ± 0.11 kJ/mol) and 1.45 nm diameter carbon nanotubes (3.50 ± 0.07 kJ/mol) that are lower than the bulk enthalpy of vaporization and closer to the bulk enthalpy of fusion. Favored partial filling fractions are calculated, highlighting the effect of subnanometer changes in confining diameter on fluid properties and suggesting the promise of molecular engineering of nanoconfined liquid/vapor interfaces for water treatment or membrane distillation.

5.
Nat Nanotechnol ; 18(2): 177-183, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36585518

ABSTRACT

For over 100 years, the Nernst-Einstein relation has linked a charged particle's electrophoretic mobility and diffusion coefficient. Here we report experimental measurements of diffusion and electromigration of K+ ions in narrow 0.8-nm-diameter single-walled carbon nanotube porins (CNTPs) and demonstrate that the Nernst-Einstein relation in these channels breaks down by more than three orders of magnitude. Molecular dynamics simulations using polarizable force fields show that K+ ion diffusion in CNTPs in the presence of a single-file water chain is three orders of magnitude slower than bulk diffusion. Intriguingly, the simulations also reveal a disintegration of the water chain upon application of electric fields, resulting in the formation of distinct K+-water clusters, which then traverse the CNTP at high velocity. Finally, we show that although individual ion-water clusters still obey the Nernst-Einstein relation, the overall relation breaks down because of two distinct mechanisms for ion diffusion and electromigration.

6.
Adv Mater ; 34(32): e2201472, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35389537

ABSTRACT

Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high-performance gas separations due to their atomic thickness, large-scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas-sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas-separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas-separation applications of nanoporous atomically thin membranes.

7.
ACS Nano ; 15(1): 1727-1740, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33439000

ABSTRACT

The development of nanoporous single-layer graphene membranes for gas separation has prompted increasing theoretical investigations of gas transport through graphene nanopores. However, computer simulations and theories that predict gas permeances through individual graphene nanopores are not suitable to describe experimental results, because a realistic graphene membrane contains a large number of nanopores of diverse sizes and shapes. With this need in mind, here, we generate nanopore ensembles in silico by etching carbon atoms away from pristine graphene with different etching times, using a kinetic Monte Carlo algorithm developed by our group for the isomer cataloging problem of graphene nanopores. The permeances of H2, CO2, and CH4 through each nanopore in the ensembles are predicted using transition state theory based on classical all-atomistic force fields. Our findings show that the total gas permeance through a nanopore ensemble is dominated by a small fraction of large nanopores with low energy barriers of pore crossing. We also quantitatively predict the increase of the gas permeances and the decrease of the selectivities between the gases as functions of the etching time of graphene. Furthermore, by fitting the theoretically predicted selectivities to the experimental ones reported in the literature, we show that nanopores in graphene effectively expand as the temperature of permeation measurement increases. We propose that this nanopore "expansion" is due to the desorption of contaminants that partially clog the graphene nanopores. In general, our study highlights the effects of the pore size and shape distributions of a graphene nanopore ensemble on its gas separation properties and calls into attention the potential effect of pore-clogging contamination in experiments.

8.
Langmuir ; 37(2): 722-733, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33395299

ABSTRACT

Solid/water interfaces, in which salt ions come in close proximity to solids, are ubiquitous in nature. Because water is a polar solvent and salt ions are charged, a long-standing puzzle involving solid/water interfaces is how do the electric fields exerted by the salt ions and the interfacial water molecules polarize the charge distribution in the solid and how does this polarization, in turn, influence ion adsorption at any solid/water interface. Here, using state-of-the-art polarizable force fields derived from quantum chemical simulations, we perform all-atomistic molecular dynamics simulations to investigate the adsorption of various ions comprising the well-known Hofmeister series at the graphene/water interface, including comparing with available experimental data. Our findings reveal that, in vacuum, the ionic electric field-induced polarization of graphene results in a significantly large graphene-ion polarization energy, which drives all salt ions to adsorb to graphene. On the contrary, in the presence of water molecules, we show that the ions and the water molecules exert waves of molecular electric fields on graphene which destructively interfere with each other. This remarkable phenomenon is shown to cause a water-mediated screening of more than 85% of the graphene-ion polarization energy. Finally, by investigating superhydrophilic and superhydrophobic model surfaces, we demonstrate that this phenomenon occurs universally at all solid/water interfaces and results in a significant weakening of the ion-solid interactions, such that ion specific effects are governed primarily by a competition between the ion-water and water-water interactions, irrespective of the nature of the solid/water interface.

9.
ACS Nano ; 15(2): 2778-2790, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33512159

ABSTRACT

Although the structure and properties of water under conditions of extreme confinement are fundamentally important for a variety of applications, they remain poorly understood, especially for dimensions less than 2 nm. This problem is confounded by the difficulty in controlling surface roughness and dimensionality in fabricated nanochannels, contributing to a dearth of experimental platforms capable of carrying out the necessary precision measurements. In this work, we utilize an experimental platform based on the interior of lithographically segmented, isolated single-walled carbon nanotubes to study water under extreme nanoscale confinement. This platform generates multiple copies of nanotubes with identical chirality, of diameters from 0.8 to 2.5 nm and lengths spanning 6 to 160 µm, that can be studied individually in real time before and after opening, exposure to water, and subsequent water filling. We demonstrate that, under controlled conditions, the diameter-dependent blue shift of the Raman radial breathing mode (RBM) between 1 and 8 cm-1 measures an increase in the interior mechanical modulus associated with liquid water filling, with no response from exterior water exposure. The observed RBM shift with filling demonstrates a non-monotonic trend with diameter, supporting the assignment of a minimum of 1.81 ± 0.09 cm-1 at 0.93 ± 0.08 nm with a nearly linear increase at larger diameters. We find that a simple hard-sphere model of water in the confined nanotube interior describes key features of the diameter-dependent modulus change of the carbon nanotube and supports previous observations in the literature. Longer segments of 160 µm show partial filling from their ends, consistent with pore clogging. These devices provide an opportunity to study fluid behavior under extreme confinement with high precision and repeatability.

10.
ACS Nano ; 13(10): 11809-11824, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31532624

ABSTRACT

Nanoporous graphene is a promising candidate material for gas separation membranes, due to its atomic thickness and low cross-membrane transport resistance. The mechanisms of gas permeation through graphene nanopores, in both the large and small pore size limits, have been reported in the literature. However, mechanistic insights into the crossover from the small pore size limit to the large pore size limit are still lacking. In this study, we develop a comprehensive theoretical framework to predict gas permeance through graphene nanopores having a wide range of diameters using analytical equations. We formulate the transport kinetics associated with the direct impingement from the bulk and with the surface diffusion from the adsorption layer on graphene and then combine them to predict the overall gas permeation rate using a reaction network model. We also utilize molecular dynamics simulations to validate and calibrate our theoretical model. We show that the rates of both the direct impingement and the surface diffusion pathways need to be corrected using different multiplicative factors, which are functions of temperature, gas kinetic diameter, and pore diameter. Further, we find a minor spillover pathway that originates from the surface adsorption layer, but is not included in our theoretical model. Finally, we utilize the corrected model to predict the permeances of CO2, CH4, and Ar through graphene nanopores. We show that as the pore diameter increases, gas transport through graphene nanopores can transition from being translocation dominated (pore diameter < 0.7 nm), to surface pathway dominated (pore diameter 1-2 nm), and finally to direct pathway dominated (pore diameter > 4 nm). The various gas permeation mechanisms outlined in this study will be particularly useful for the rational design of membranes made out of two-dimensional materials such as graphene for gas separation applications.

11.
Langmuir ; 35(35): 11550-11565, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31310557

ABSTRACT

Aqueous electrolyte solutions containing multivalent ions exhibit various intriguing properties, including attraction between like-charged colloidal particles, which results from strong ion-ion correlations. In contrast, the classical Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability, based on the Poisson-Boltzmann mean-field theory, always predicts a repulsive electrostatic contribution to the disjoining pressure. Here, we formulate a general theory of surface forces, which predicts that the contribution to the disjoining pressure resulting from ion-ion correlations is always attractive and can readily dominate over entropic-induced repulsions for solutions containing multivalent ions, leading to the phenomenon of like-charge attraction. Ion-specific short-range hydration interactions, as well as surface charge regulation, are shown to play an important role at smaller separation distances but do not fundamentally change these trends. The theory is able to predict the experimentally observed strong cohesive forces reported in cement pastes, which result from strong ion-ion correlations involving the divalent calcium ion.

12.
Nanoscale ; 11(9): 3979-3992, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30768101

ABSTRACT

Suspensions of nanoparticles (NPs) in aqueous solutions hold promise in many research fields, including energy applications, water desalination, and nanomedicine. The ability to tune NP interactions, and thereby to modulate the NP self-assembly process, holds the key to rationally synthesize NP suspensions. However, traditional models obtained by coupling the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of NP interactions, or suitable modifications of it, with the kinetic theory of colloidal aggregation are inadequate to precisely model NP self-assembly because they neglect hydration forces and discrete-size effects predominant at the nanoscale. By synergistically blending molecular dynamics and stochastic dynamics simulations with continuum theories, we develop a multi-scale (MS) model, which is able to accurately predict suspension stability, timescales for NP aggregation, and macroscopic properties (e.g., the thermal conductivity) of bare and surfactant-coated NP suspensions, in good agreement with the experimental data. Our results enable the formulation of design rules for engineering NP aqueous suspensions in a wide range of applications.

13.
ACS Nano ; 11(8): 7974-7987, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28696710

ABSTRACT

Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO2 and CH4, through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO2 and CH4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO2/CH4 mixture, the graphene nanopores exhibit a trade-off between the CO2 permeance and the CO2/CH4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO2/CH4 separation factors higher than 102 have CO2 permeances per pore lower than 10-22 mol s-1 Pa-1, and pores with separation factors of ∼10 have CO2 permeances per pore between 10-22 and 10-21 mol s-1 Pa-1. Finally, we show that a pore density of 1014 m-2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric materials. Moreover, we show that a higher pore density can potentially further boost the permeation performance of a porous graphene membrane above all existing membranes. Our findings provide insights into the potential and the limitations of porous graphene membranes for gas separation and provide an efficient methodology for screening nanopore configurations and sizes for the efficient separation of desired gas mixtures.

14.
J Chem Phys ; 138(11): 114703, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23534649

ABSTRACT

In this paper, we develop a theory to delineate the consequences of finite solvent polarization in electric double layer interaction or the osmotic pressure between two similar or oppositely charged surfaces. We use previously published Langevin-Bikerman equations to calculate this electric double layer interaction force or the osmotic pressure between the charged surfaces. The osmotic pressure between oppositely charged surfaces is found to be much larger than that between similarly charged surfaces, and for either case, the influence of solvent polarization ensures a larger pressure than that predicted by the Poisson-Boltzmann (PB) model. We derive distinct scaling relationships to explain the increase of the pressure as a function of the separation between the surfaces, the solvent polarizability, and the number density of water molecules. Most importantly, we demonstrate that our theory can successfully reproduce the experimental results of interaction force between similar and oppositely charged surfaces, by accounting for the large under-prediction made by the corresponding PB model.

SELECTION OF CITATIONS
SEARCH DETAIL
...