Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Cancer Ther ; 7(10): 3352-62, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18852138

ABSTRACT

Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffin-embedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma.


Subject(s)
Cell Movement/drug effects , Melanoma/pathology , Multienzyme Complexes/antagonists & inhibitors , Phosphodiesterase I/antagonists & inhibitors , Pyrophosphatases/antagonists & inhibitors , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Humans , Hydrolysis/drug effects , Kinetics , Melanoma/enzymology , Multienzyme Complexes/isolation & purification , Neoplasm Invasiveness , Nevus/enzymology , Phosphodiesterase I/isolation & purification , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/isolation & purification , Skin/enzymology , Small Molecule Libraries/chemistry
3.
Bioorg Med Chem Lett ; 14(11): 2973-7, 2004 Jun 07.
Article in English | MEDLINE | ID: mdl-15125971

ABSTRACT

N-Aryl aminothiazoles 6-9 were prepared from 2-bromothiazole 5 and found to be CDK inhibitors. In cells they act as potent cytotoxic agents. Selectivity for CDK1, CDK2, and CDK4 was dependent of the nature of the N-aryl group and distinct from the CDK2 selective N-acyl analogues. The N-2-pyridyl analogues 7 and 19 showed pan CDK inhibitory activity. Elaborated analogues 19 and 23 exhibited anticancer activity in mice against P388 murine leukemia. The solid-state structure of 7 bound to CDK2 shows a similar binding mode to the N-acyl analogues.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Leukemia/drug therapy , Mice , Neoplasms, Experimental/drug therapy , Protein Binding , Structure-Activity Relationship , Thiazoles/chemical synthesis , Treatment Outcome
4.
J Med Chem ; 47(7): 1719-28, 2004 Mar 25.
Article in English | MEDLINE | ID: mdl-15027863

ABSTRACT

N-Acyl-2-aminothiazoles with nonaromatic acyl side chains containing a basic amine were found to be potent, selective inhibitors of CDK2/cycE which exhibit antitumor activity in mice. In particular, compound 21 [N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide, BMS-387032], has been identified as an ATP-competitive and CDK2-selective inhibitor which has been selected to enter Phase 1 human clinical trials as an antitumor agent. In a cell-free enzyme assay, 21 showed a CDK2/cycE IC(50) = 48 nM and was 10- and 20-fold selective over CDK1/cycB and CDK4/cycD, respectively. It was also highly selective over a panel of 12 unrelated kinases. Antiproliferative activity was established in an A2780 cellular cytotoxicity assay in which 21 showed an IC(50) = 95 nM. Metabolism and pharmacokinetic studies showed that 21 exhibited a plasma half-life of 5-7 h in three species and moderately low protein binding in both mouse (69%) and human (63%) serum. Dosed orally to mouse, rat, and dog, 21 showed 100%, 31%, and 28% bioavailability, respectively. As an antitumor agent in mice, 21 administered at its maximum-tolerated dose exhibited a clearly superior efficacy profile when compared to flavopiridol in both an ip/ip P388 murine tumor model and in a s.c./i.p. A2780 human ovarian carcinoma xenograft model.


Subject(s)
Antineoplastic Agents/chemical synthesis , CDC2-CDC28 Kinases/antagonists & inhibitors , Oxazoles/chemical synthesis , Thiazoles/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , CDC2-CDC28 Kinases/metabolism , Cell Line, Tumor , Cell-Free System , Crystallography, X-Ray , Cyclin E/metabolism , Cyclin-Dependent Kinase 2 , Dogs , Drug Screening Assays, Antitumor , Drug Stability , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Neoplasm Transplantation , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Phosphorylation , Rats , Retinoblastoma Protein/metabolism , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Transplantation, Heterologous
5.
Bioorg Med Chem Lett ; 13(14): 2405-8, 2003 Jul 21.
Article in English | MEDLINE | ID: mdl-12824044

ABSTRACT

Structure-activity studies of 1H-pyrazolo[3,4-b]pyridine 1 have resulted in the discovery of potent CDK1/CDK2 selective inhibitor 21h, BMS-265246 (CDK1/cycB IC(50)=6 nM, CDK2/cycE IC(50)=9 nM). The 2,6-difluorophenyl substitution was critical for potent inhibitory activity. A solid state structure of 21j, a close di-fluoro analogue, bound to CDK2 shows the inhibitor resides coincident with the ATP purine binding site and forms important H-bonds with Leu83 on the protein backbone.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites/drug effects , CDC2-CDC28 Kinases/antagonists & inhibitors , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinases/chemistry , Hydrogen Bonding , Indicators and Reagents , Leucine/chemistry , Models, Molecular , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 13(6): 1133-6, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12643928

ABSTRACT

1H-Pyrazolo[3,4-b]pyridine 3 (SQ-67563) has been shown to be a potent, selective inhibitor of CDK1/CDK2 in vitro. In cells 3 acts as a cytotoxic agent with the ability to block cell cycle progression and/or induce apoptosis. The solid state structure of 3 bound to CDK2 shows 3 resides coincident with the ATP purine binding site and forms important H-bonding interactions with Leu83 on the protein backbone.


Subject(s)
CDC2-CDC28 Kinases , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Biological Assay , CDC2 Protein Kinase/antagonists & inhibitors , Cell Cycle/drug effects , Cyclin-Dependent Kinase 2 , Female , Humans , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Ovarian Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Structure-Activity Relationship , Tumor Cells, Cultured
7.
J Med Chem ; 45(18): 3905-27, 2002 Aug 29.
Article in English | MEDLINE | ID: mdl-12190313

ABSTRACT

High throughput screening identified 2-acetamido-thiazolylthio acetic ester 1 as an inhibitor of cyclin-dependent kinase 2 (CDK2). Because this compound is inactive in cells and unstable in plasma, we have stabilized it to metabolic hydrolysis by replacing the ester moiety with a 5-ethyl-substituted oxazole as in compound 14. Combinatorial and parallel synthesis provided a rapid analysis of the structure-activity relationship (SAR) for these inhibitors of CDK2, and over 100 analogues with IC(50) values in the 1-10 nM range were rapidly prepared. The X-ray crystallographic data of the inhibitors bound to the active site of CDK2 protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues displayed potent and broad spectrum antiproliferative activity across a panel of tumor cell lines in vitro. In addition, A2780 ovarian carcinoma cells undergo rapid apoptosis following exposure to CDK2 inhibitors of this class. Mechanism of action studies have confirmed that the phosphorylation of CDK2 substrates such as RB, histone H1, and DNA polymerase alpha (p70 subunit) is reduced in the presence of compound 14. Further optimization led to compounds such as water soluble 45, which possesses a favorable pharmacokinetic profile in mice and demonstrates significant antitumor activity in vivo in several murine and human models, including an engineered murine mammary tumor that overexpresses cyclin E, the coactivator of CDK2.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzeneacetamides , CDC2-CDC28 Kinases , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Oxazoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Cyclin E/metabolism , Cyclin-Dependent Kinase 2 , DNA Polymerase I/metabolism , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Female , Histones/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Models, Molecular , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Phosphorylation , Protein Binding , Retinoblastoma Protein/metabolism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...