Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 20: 100128, 2021.
Article in English | MEDLINE | ID: mdl-34332124

ABSTRACT

Understanding how proteins are organized in compartments is essential to elucidating their function. While proximity-dependent approaches such as BioID have enabled a massive increase in information about organelles, protein complexes, and other structures in cell culture, to date there have been only a few studies on living vertebrates. Here, we adapted proximity labeling for protein discovery in vivo in the vertebrate model organism, zebrafish. Using lamin A (LMNA) as bait and green fluorescent protein (GFP) as a negative control, we developed, optimized, and benchmarked in vivo TurboID and miniTurbo labeling in early zebrafish embryos. We developed both an mRNA injection protocol and a transgenic system in which transgene expression is controlled by a heat shock promoter. In both cases, biotin is provided directly in the egg water, and we demonstrate that 12 h of labeling are sufficient for biotinylation of prey proteins, which should permit time-resolved analysis of development. After statistical scoring, we found that the proximal partners of LMNA detected in each system were enriched for nuclear envelope and nuclear membrane proteins and included many orthologs of human proteins identified as proximity partners of lamin A in mammalian cell culture. The tools and protocols developed here will allow zebrafish researchers to complement genetic tools with powerful proteomics approaches.


Subject(s)
Proteomics/methods , Animals , Animals, Genetically Modified , Biotinylation , Embryo, Nonmammalian , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , RNA, Messenger , Transgenes , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
Development ; 145(4)2018 02 14.
Article in English | MEDLINE | ID: mdl-29437781

ABSTRACT

Oxygen concentrations vary between tissues of multicellular organisms and change under certain physiological or pathological conditions. Multiple methods have been developed for measuring oxygenation of biological samples in vitro and in vivo However, most require complex equipment, are laborious and have significant limitations. Here we report that oxygen concentration determines the choice between two maturation pathways of DsRed FT (Timer). At high oxygen levels, this DsRed derivate matures predominantly into a red fluorescent isoform. By contrast, a green fluorescent isoform is favored by low oxygen levels. Ratiometric analysis of green and red fluorescence after a pulse of Timer expression in Drosophila larvae provides a record of the history of tissue oxygenation during a subsequent chase period, for the whole animal with single-cell precision. Tissue spreads revealed fine differences in oxygen exposure among different cells of the same organ. We expect that the simplicity and robustness of our approach will greatly impact hypoxia research, especially in small animal models.


Subject(s)
Drosophila melanogaster/metabolism , Fluorescent Dyes/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Oxygen/analysis , Animals , Animals, Genetically Modified , Drosophila melanogaster/genetics , Microscopy, Fluorescence/methods , Protein Isoforms/genetics
3.
Cell Death Dis ; 8(2): e2588, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28151480

ABSTRACT

Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 1, 3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL). The kinase of RIPK3 phosphorylates MLKL causing MLKL to form a pore-like structure, allowing intracellular contents to release and cell death to occur. Alternatively, RIPK1 and RIPK3 have been shown to regulate cytokine production directly influencing inflammatory immune infiltrates. Recent data suggest that necroptosis may contribute to the malignant transformation of tumor cells in vivo and we asked whether necroptosis may have a role in the tumor microenvironment altering the ability of the tumor to grow or metastasize. To determine if necroptosis in the tumor microenvironment could promote inflammation alone or by initiating necroptosis and thereby influencing growth or metastasis of tumors, we utilized a syngeneic tumor model of metastasis. Loss of RIPK3 in the tumor microenvironment reduced the number of tumor nodules in the lung by 46%. Loss of the kinase activity in RIPK1, a member of the necrosome also reduced tumor nodules in the lung by 38%. However, the loss of kinase activity in RIPK3 or the loss of MLKL only marginally altered the ability of tumor cells to form in the lung. Using bone marrow chimeras, the decrease in tumor nodules in the Ripk3-/- appeared to be due to the stromal compartment rather than the hematopoietic compartment. Transmigration assays showed decreased ability of tumor cells to transmigrate through the vascular endothelial layer, which correlated with decreased permeability in the Ripk3-/- mice after tumor injection. In response to permeability factors, such as vascular endothelial growth factor, RIPK3 null endothelial cells showed decreased p38/HSP27 activation. Taken together, our results suggest an alternative function for RIPK1/RIPK3 in vascular permeability leading to decreased number of metastasis.


Subject(s)
Capillary Permeability/physiology , Necrosis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis/physiology , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Death/physiology , Cell Line , Cell Line, Tumor , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Necrosis/pathology , Vascular Endothelial Growth Factor A/metabolism
4.
Biol Open ; 6(2): 296-304, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28011628

ABSTRACT

Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.

5.
PLoS Genet ; 12(5): e1006073, 2016 05.
Article in English | MEDLINE | ID: mdl-27223464

ABSTRACT

Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MicroRNAs/biosynthesis , Prolyl Hydroxylases/genetics , Transcription, Genetic , Animals , Cell Hypoxia/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MicroRNAs/genetics , Oxygen/metabolism , Prolyl Hydroxylases/metabolism
6.
Dev Cell ; 33(5): 535-48, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25982676

ABSTRACT

In epithelia, specialized tricellular junctions (TCJs) mediate cell contacts at three-cell vertices. TCJs are fundamental to epithelial biology and disease, but only a few TCJ components are known, and how they assemble at tricellular vertices is not understood. Here we describe a transmembrane protein, Anakonda (Aka), which localizes to TCJs and is essential for the formation of tricellular, but not bicellular, junctions in Drosophila. Loss of Aka causes epithelial barrier defects associated with irregular TCJ structure and geometry, suggesting that Aka organizes cell corners. Aka is necessary and sufficient for accumulation of Gliotactin at TCJs, suggesting that Aka initiates TCJ assembly by recruiting other proteins to tricellular vertices. Aka's extracellular domain has an unusual tripartite repeat structure that may mediate self-assembly, directed by the geometry of tricellular vertices. Conversely, Aka's cytoplasmic tail is dispensable for TCJ localization. Thus, extracellular interactions, rather than TCJ-directed intracellular transport, appear to mediate TCJ assembly.


Subject(s)
Animals, Genetically Modified/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/cytology , Epithelium/growth & development , Intercellular Junctions/physiology , Tight Junctions/physiology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Embryo, Nonmammalian/metabolism , Epithelium/metabolism , Immunoblotting , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Transport , Repetitive Sequences, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...