Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 37(12): 2580-92, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22763617

ABSTRACT

Trace amines (TAs) such as ß-phenylethylamine, p-tyramine, or tryptamine are biogenic amines found in the brain at low concentrations that have been implicated in various neuropsychiatric disorders like schizophrenia, depression, or attention deficit hyperactivity disorder. TAs are ligands for the recently identified trace amine-associated receptor 1 (TAAR1), an important modulator of monoamine neurotransmission. Here, we sought to investigate the consequences of TAAR1 hypersignaling by generating a transgenic mouse line overexpressing Taar1 specifically in neurons. Taar1 transgenic mice did not show overt behavioral abnormalities under baseline conditions, despite augmented extracellular levels of dopamine and noradrenaline in the accumbens nucleus (Acb) and of serotonin in the medial prefrontal cortex. In vitro, this was correlated with an elevated spontaneous firing rate of monoaminergic neurons in the ventral tegmental area, dorsal raphe nucleus, and locus coeruleus as the result of ectopic TAAR1 expression. Furthermore, Taar1 transgenic mice were hyposensitive to the psychostimulant effects of amphetamine, as it produced only a weak locomotor activation and failed to alter catecholamine release in the Acb. Attenuating TAAR1 activity with the selective partial agonist RO5073012 restored the stimulating effects of amphetamine on locomotion. Overall, these data show that Taar1 brain overexpression causes hyposensitivity to amphetamine and alterations of monoaminergic neurotransmission. These observations confirm the modulatory role of TAAR1 on monoamine activity and suggest that in vivo the receptor is either constitutively active and/or tonically activated by ambient levels of endogenous agonist(s).


Subject(s)
Amphetamine/pharmacology , Biogenic Monoamines/physiology , Brain Chemistry/physiology , Central Nervous System Stimulants/pharmacology , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/physiology , Synaptic Transmission/physiology , Aniline Compounds/pharmacology , Animals , Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Electrophysiological Phenomena , Imidazoles/pharmacology , In Vitro Techniques , Mice , Mice, Inbred C57BL , Microdialysis , Motor Activity/drug effects , Motor Activity/physiology , Patch-Clamp Techniques , Phenotype , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology , gamma-Aminobutyric Acid/physiology
2.
Neurodegener Dis ; 2(6): 284-98, 2005.
Article in English | MEDLINE | ID: mdl-16909011

ABSTRACT

Most of the transgenic mice generated to model Alzheimer's disease express human amyloid precursor protein (APP) mutants alone or in conjunction with presenilin mutants. We have generated a mouse model by overexpressing human BACE and human APP with the V717F mutation. The combination of a mutation at the gamma-secretase cleavage site of APP and of increased beta-secretase activity should favour the production of amyloid peptides. We analysed double BACE/APPIn and single APPIn transgenic mice at 16-18 months for amyloid load, brain histopathology and behavioural deficits. We show that overexpression of BACE induces an increase in APP CTFbeta and total brain Abeta peptides. Brain histopathology shows clearly enhanced amyloid deposits in the cortex, hippocampus and in brain vasculature when compared to single APPIn transgenic mice. Amyloid deposits are mostly diffuse and predominantly composed of Abeta(42). A strong inflammatory reaction is evidenced by the presence of microglial cells around the most mature amyloid deposits and astrocytosis over the entire cerebral cortex. At the same age, the APPIn single-transgenic mice show only very limited pathology. When assessed for their cognitive performance at 12 months, BACE/APPIn mice show impaired spatial acquisition in the Morris water maze test. However, these deficits are not greater than those observed in the APPIn single-transgenic animals.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Amyloidosis/genetics , Amyloidosis/pathology , Encephalitis/genetics , Encephalitis/pathology , Endopeptidases/genetics , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/metabolism , Amyloidosis/psychology , Animals , Aspartic Acid Endopeptidases , Behavior, Animal/physiology , Blotting, Western , Body Weight/physiology , Encephalitis/psychology , Enzyme-Linked Immunosorbent Assay , Genotype , Humans , Immunohistochemistry , In Situ Hybridization , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Motor Activity/physiology , Mutation/genetics , Peptide Fragments/metabolism
3.
J Cereb Blood Flow Metab ; 22(4): 420-30, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11919513

ABSTRACT

These studies have addressed the role of caspase-3 activation in neuronal death after cerebral ischemia in different animal models. The authors were unable to show activation of procaspase-3 measured as an induction of DEVDase (Asp-Glu-Val-Asp) activity after focal or transient forebrain ischemia in rats. DEVDase activity could not be induced in the cytosolic fraction of the brain tissue obtained from these animals by exogenous cytochrome c/dATP and Ca2+. However, the addition of granzyme B to these cytosolic fractions resulted in a significant activation of DEVDase, confirming that the conditions were permissive to analyze proteolytic cleavage of the DEVD-AMC (7-amino-4-methyl-coumarin) substrate. Consistent with these findings, zVal-Ala-Asp-fluoromethylketone administered after focal ischemia did not have a neuroprotective effect. In contrast to these findings, a large increase in DEVDase activity was detected in a model of hypoxic-ischemia in postnatal-day-7 rats. Furthermore, in postnatal-day-7 animals treated with MK-801, in which it has been suggested that excessive apoptosis is induced, the authors were unable to detect activation of DEVDase activity but were able to induce it in vitro by the addition of cytochrome c/dATP and Ca2+ to the cytosolic fraction. Analysis of cytochrome c distribution did not provide definitive evidence for selective cytochrome c release in the permanent focal ischemia model, whereas in the transient model a small but consistent amount of cytochrome c was found in the cytosolic fraction. However, in both models the majority of cytochrome c remained associated with the mitochondrial fraction. In conclusion, the authors were unable to substantiate a role of mitochondrially derived cytochrome c and procaspase-3 activation in ischemia-induced cell death in adult brain, but did see a clear induction of caspase-3 in neonatal hypoxia.


Subject(s)
Brain Ischemia/physiopathology , Brain/enzymology , Caspases/metabolism , Neurons/physiology , Peptide Hydrolases/metabolism , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Animals, Newborn , Brain/growth & development , Brain/pathology , Brain/physiopathology , Brain Ischemia/enzymology , Brain Ischemia/pathology , Caspase 3 , Cell Death , Cytochrome c Group/metabolism , Dizocilpine Maleate/pharmacology , Enzyme Activation , Granzymes , Humans , Infarction, Middle Cerebral Artery , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/enzymology , Neuroprotective Agents/pharmacology , Protein Precursors/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Serine Endopeptidases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...